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 A B S T R A C T

A new finite element formulation and a set of novel desktop experiments for studying wrinkling of thin plates 
and shells on shrinking substrates is presented. In developing the computational model, we build on our 
previous work and further develop the finite element formulation by implementing a neo-Hookean material 
model to more accurately capture large displacements and large strains in the substrate. The substrate is 
discretized with solid 3D hexahedral 8 node finite elements, whose formulation was derived using the theory 
of incompatible modes. Our computational model is validated through a series of numerical and desktop 
experiments on plates and shells. Numerically, the strain mismatch is simulated by cooling the substrate, while 
experimentally it is achieved through the shrinkage of the silicone substrate during solidification, which was 
enhanced by the addition of a silicone oil. The extent of shrinkage was controlled by the volume ratio of silicone 
elastomer-to-silicone oil. A good agreement between the calculated wavelengths of the neighboring wrinkles 
from numerical simulations, experiments and theoretical predictions confirmed the predictive effectiveness of 
the proposed numerical procedure.
1. Introduction

Surface wrinkling induced by the shrinkage of the substrate is a 
phenomenon observed in various processes, such as aging skin, drying 
fruit, solidifying polymers, etc. This phenomenon occurs when a thin 
structure is adhered on a softer substrate that undergoes shrinkage as 
a result of cooling, evaporation, drying, curing, etc. As the substrate 
shrinks, the thin structure is forced to accommodate the reduction in 
size of the softer substrate, leading to localized deformation and the 
formation of distinctive surface patterns. This intricate interplay be-
tween the substrate and the thin structure is governed by the geometry, 
mismatch in their material properties and the amount of compressive 
stresses that exceed a certain threshold, after which it is energetically 
more efficient for an initially smooth structure to bend rather than 
compress further.

In practice, wrinkling was used to engineer functional and re-
sponsive surfaces with tailored properties, such as tunable microlens 
arrays [1], mimicking of natural gripping mechanisms through ad-
hesion control [2], surface wetting control [3], aerodynamic drag 
control [4], opacity control [5], piezo-resistive sensors [6], biocompat-
ible electronics, such as thin film transistors (TFT) [7] and OLEDs [8], 
microfluidic electronics [9], artificial skin electronics [10], epidermal 
patches for the monitoring of metabolic biomarkers [11], monitoring of 
food ripening process [12] and bladder cancer cell detection [13,14].
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Most of these applications were developed from experiments that 
relied on highly innovative approaches, but to really understand the 
process an accurate theoretical or computational simulation model is 
needed. The simulation can rely on commercial FEM software, such 
as Abaqus, Ansys or Comsol, (see, e.g. [15–18]) or can be performed 
with custom-built numerical algorithms (see e.g., [19–24]). The most 
notable progress in this direction was made by Stoop et al. [25], Xu 
and Potier-Ferry [26], Lavrenčič et al. [27], Veldin et al. [28,29], Zhao 
et al. [30] and Sriram et al. [31]. Lavrenčič et al. [27] used implicit 
dynamics with a high frequency energy dissipating algorithm [32–34]. 
Xu and Potier-Ferry [26] approached the problem with a nonlinear 
7-parameter 3D shell element with reduced integration [35,36] and 
an 8-node linear 3D solid finite element for the substrate, also with 
reduced integration. Veldin et al. [28] used the reduced Kirchhoff–
Love shell model to define a discrete Kirchhoff quadrilateral finite 
element, named DKQ-3, coupled to a Winkler foundation. In a sub-
sequent study Veldin et al. [29] developed a 5 degree-of-freedom 
discrete Kirchhoff–Love non-linear quadrilateral finite element, based 
on the bilinear Coons patch, also using the Winkler foundation. Zhao 
et al. [30] extended the Fourier spectral method, previously used 
by Huang et al. [37–39] on planar film–substrate systems, to curved 
bilayer systems. Sriram et al. [31] used an energy minimization pro-
cedure obtained from a variational framework implemented through a 
Q1RT0 finite element using Raviart–Thomas-type interpolations.
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However, not many researchers performed both numerical and 
experimental analyses. One of them was Cao et al. [40] who com-
pared experiments on microscopic spheres with a numerical study in 
Abaqus, and Stoop et al. [25] who compared wrinkle patterns obtained 
on polymeric spheres to numerical solutions of a generalized Swift-
Hohenberg fourth-order theory using their own finite element code. 
Recently, Xu et al. [41] published a study on the stability of a hexag-
onal pattern on a buckled sphere, where they compared numerical 
results obtained using Abaqus with experimental observations. In their 
experiment, they fabricated hollow spheres, but instead of using the 
concept of a bilayer to achieve the initial surface wrinkling, they fabri-
cated them with a hexagonal network of ridges already present in the 
undeformed configuration and observed its buckling upon subsequent 
shrinking of the sphere interior. Another recent study, by Zavodnik 
and Brojan [42] also focused on the theory, experiments and a new 
numerical pseudo-spectral method based on spherical harmonics that 
is remarkably successful in predicting wrinkling on spheres.

In this paper we present a new finite element formulation and a 
set of novel desktop experiments for the analysis of thin shell wrin-
kling on shrinking substrates. In the development of the computational 
model we build further on our previous work described in [28,43,44]. 
First, the substrate is modeled using a hexahedral 8-node solid finite 
element that is free from volumetric locking due to the application 
of incompatible modes [45]. This makes it particularly suitable for 
analyzing nearly incompressible hyperelastic materials. Second, we em-
ploy a neo-Hookean hyperelastic material model for both the substrate 
and the thin surface film, replacing the previously used St. Venant-
Kirchhoff model. The neo-Hookean model more accurately captures 
large displacements and strains, overcoming the limitations of the St. 
Venant-Kirchhoff model, which produces erroneous results under com-
pression due to its lack of polyconvexity. As for the shell finite element, 
we apply a fully non-linear Discrete-Kirchhoff shell finite element with 
4 nodes [29]. It has rich interpolation of displacements, which allows 
to get smooth wrinkling patterns for relatively coarse meshes. The shell 
finite element has three global displacements and two local rotations 
at each node. Because of the fulfillment of the Kirchhoff kinematic 
constraint at the discrete points, the shell rotations and displacements 
are not independent (rather they are weakly coupled), which is ad-
vantageous when using solid and shell finite elements together (as is 
the case in this work). Namely, there is no need for an additional 
procedure to couple shell rotations with solid displacements. Equality 
of the shell and solid displacements at a common (solid-shell) node 
naturally includes coupling between the solid displacements and the 
shell rotations. In this sense, the coupling between the shell degrees of 
freedom and the solid degrees of freedom is guaranteed automatically. 

Moreover, our model was applied to a range of both numerical 
and desktop experiments on flat (plate) as well as curved (shell) ge-
ometries. Numerically, the strain mismatch is simulated by cooling the 
substrate, while experimentally it is achieved through the shrinkage of 
the silicone substrate during solidification that was pronounced by the 
addition of a silicone oil. The extent of the shrinkage was controlled by 
the volume ratio of silicone elastomer to silicone oil.

The rest of the paper is organized as follows: in Section 2 all the 
computational models that were used are described, including the neo-
Hookean material model applied to shells, the Kirchhoff–Love shell 
model and a 3D model together with its finite element implementation. 
In Section 3, the results of numerical simulations and experiments on 
rectangular and circular plates, and on cylindrical and hemispherical 
shells that are attached to thick substrates are discussed. In Section 4, 
a summary of our findings and insights into potential future extensions 
of our current research is presented.

2. Computational models

In this section the shell finite element is briefly described without 
going into too much detail. It is based on the DKQ-5 shell finite 
2 
element, initially introduced in [29], which is upgraded here with a 
neo-Hookean material model, naming it DKQ-5_neo. We also describe 
the 3D hexahedral 8 node finite element that is based on a neo-
Hookean material model, here named 3D_Solid_neo. It uses the theory 
of incompatible modes, which makes it less stiff. The aim of developing 
a 3D finite element is to be used to model thick, soft substrates more 
accurately.

2.1. Constitutive relations

First, general equations of the material model, which can be directly 
used in the formulations of 3D finite elements are introduced. The 
general material equations are further adjusted to the shell formulation, 
which is based on the plane stress assumption.

2.1.1. Neo-Hookean material model
The neo-Hookean material model is, in general, only available for 

3D formulations. This material model is more appropriate than the 
mostly widely used Saint Venant–Kirchhoff material model for cases 
when compression prevails in the deformation field. The strain energy 
density function of the neo-Hookean material model is given by 
𝑊 = 𝐶1(tr 𝑪 − 3 − 2 ln 𝐽 ) +𝐷1(𝐽 − 1)2, (1)

where 
𝐶1 =

𝜇
2
, 𝐷1 =

𝜆
2

and 𝐽 = det(𝑭 ) (2)

are material constants and determinant of the deformation gradient, 
respectively. In formulation (1), 𝑪 represents the right Cauchy–Green 
deformation tensor, 
𝑪 = 𝑭 𝑇𝑭 , (3)

while the deformation gradient is considered in the form 
𝑭 = 𝑮 + ∇𝒖 (4)

with 𝑮 and ∇𝒖 being the metric tensor of the undeformed shell and the 
displacement gradient, respectively.

Differentiation of Eq. (1) with respect to 𝑪 , yields the second 
Piola–Kirchhoff stress tensor 
𝑺 = 2 𝜕𝑊

𝜕𝑪
. (5)

Note that, the above equations are appropriate to be used within 3D 
formulations and are as such suitable for implementation in 3D finite 
elements.

2.1.2. Neo-Hookean constitutive material model for shells
There is no straightforward procedure to transform the basic neo-

Hookean equations into a form suitable for the shell formulation. 
In the shell equations, where the plane stress field is assumed the 
stress in the direction 𝑆33 = 0. Because of this assumption, equations 
in Section 2.1.1 have to be appropriately modified. The 𝑆33 element 
of the second Piola–Kirchhoff stress must be zero, but this can only 
be fulfilled approximately, 𝑆33 ≈ 0. This equation is nonlinear and, as 
such, should be solved iteratively by the Newton–Raphson method as 
described in [46]. Variables in Eq. (1) should be modified such that 
they are suitable for the use in the shell theory. Some useful relations 
that will be needed later are listed next. The determinant of the right 
Cauchy–Green deformation tensor can be expressed as 
det 𝑪 = det(𝑭 𝑇𝑭 ) = det 𝑭 𝑇 det 𝑭 = 𝐽 2, (6)

from which it follows 
𝐽 =

√

det 𝑪 . (7)

The trace of 𝑪 in Eq. (1) can be written as 
tr 𝑪 = 𝐶𝑖𝑗𝑮𝑖 ⋅𝑮𝑗 = 𝐶𝛼𝛽𝑮𝛼 ⋅𝑮𝛽 + 𝐶33. (8)



T. Veldin et al. Thin-Walled Structures 215 (2025) 113504 
Deformations will be characterized with the Green–Lagrange defor-
mation tensor 𝑬 ∶= (𝑪 −𝑮)∕2 (tensor 𝑮 can be replaced with the unit 
tensor 𝑰 when the Cartesian coordinate system is used). Tensor 𝑪 can 
be therefore expressed as 
𝑪 = 2𝑬 +𝑮 = (2𝐸𝑖𝑗 + 𝐺𝑖𝑗 )𝑮𝑖 ⊗𝑮𝑗 (9)

or the same in index notation 
𝐶𝑖𝑗 = 2𝐸𝑖𝑗 + 𝐺𝑖𝑗 . (10)

Since the deformation gradient 𝑭  can be written as 
𝑭 = 𝒈𝑖 ⊗𝑮𝑖, (11)

𝑪 can also be written as follows 
𝑪 = 𝑭 𝑇𝑭 = 𝑔𝑖𝑗𝑮𝑖 ⊗𝑮𝑗 . (12)

In matrix notation with covariant and contravariant components this 
reads 

(𝐶𝑖𝑗 ) =
⎛

⎜

⎜

⎝

𝑔11 𝑔12 0
𝑔21 𝑔22 0
0 0 𝐶33

⎞

⎟

⎟

⎠

and (𝐶
𝑖𝑗
) =

⎛

⎜

⎜

⎝

𝑔11 𝑔12 0
𝑔21 𝑔22 0
0 0 𝐶−1

33

⎞

⎟

⎟

⎠

, (13)

respectively.
In case when the Saint Venant–Kirchhoff material model is used, 

such as in [29], it is enough if the Gauss integration is only performed 
in two directions. However, when the neo-Hookean material model is 
used, one has to integrate in the direction of the shell thickness. At 
every Gauss integration point the Newton–Raphson method has to be 
used to fulfill the 𝑆33 ≈ 0 condition.

According to Eq. (5) the following form of the second Piola–
Kirchhoff stress tensor can now be obtained 
𝑺 = 𝜇(𝐺𝑖𝑗 − 𝐶

𝑖𝑗
)𝑮𝑖 ⊗𝑮𝑗 + 𝜆(𝐽 2 − 𝐽 )𝐶

𝑖𝑗
𝑮𝑖 ⊗𝑮𝑗 . (14)

If it is assumed for very thin shells that the metric tensor is constant 
over the thickness of the shell, it follows that 
𝐺𝑖𝑗 ≈ 𝐴𝑖𝑗 , 𝐺𝑖𝑗 ≈ 𝐴𝑖𝑗 . (15)

Furthermore, one can take into account the following expressions: 
𝐴𝛼𝛽 = 𝑨𝛼 ⋅ 𝑨𝛽 , 𝐴𝛼𝑖 = 𝐴𝑗𝛼 = 𝐴𝛼𝑖 = 𝐴𝑗𝛼 = 0 and 𝐴33 = 𝐴33 = 1. Based on 
all these assumptions the following approximations can be used 

𝐶𝛼𝛽 = 𝑔𝛼𝛽 ≈ 𝑎𝛼𝛽 , 𝐶
𝛼𝛽

= 𝑔𝛼𝛽 ≈ 𝑎𝛼𝛽 , (16)

where 𝐶33 ≠ 𝑔33, as is defined in [46]. Therefore 𝐶𝑖𝑗 and 𝐶
𝑖𝑗 are now 

(𝐶𝑖𝑗 ) =
⎛

⎜

⎜

⎝

𝑎11 𝑎12 0
𝑎21 𝑎22 0
0 0 𝐶33

⎞

⎟

⎟

⎠

and (𝐶
𝑖𝑗
) =

⎛

⎜

⎜

⎝

𝑎11 𝑎12 0
𝑎21 𝑎22 0
0 0 𝐶−1

33

⎞

⎟

⎟

⎠

. (17)

With all the components of the tensor 𝑪 at hand the terms which are 
included in the energy density function given by Eq. (1) can be eval-
uated. The second Piola–Kirchhoff stress tensor 𝑺 can be reformulated 
into a more suitable form for the use with thin shells: 
𝑺 = 𝜇(𝐴𝑖𝑗 − 𝐶

𝑖𝑗
)𝑨𝑖 ⊗𝑨𝑗 + 𝜆(𝐽 2 − 𝐽 )𝐶

𝑖𝑗
𝑨𝑖 ⊗𝑨𝑗 . (18)

As such, the 𝑆33 component is then 
𝑆33 = 𝜇(1 − 𝐶−1

33 ) + 𝜆(𝐽 2 − 𝐽 )𝐶−1
33 . (19)

Since 𝑆33 ≈ 0, equations needed for the Newton–Raphson method 
can be written. This method needs an initial value of the variable, a 
function of this variable and the derivative of the function with respect 
to this variable. In our case this variable is 𝐶33 and the function is 
𝑆33(𝐶33). In the 𝐼th iteration, the component 𝑆33(𝐶33) of the stress 
function are written as 𝑆33

𝐼 . A correction of the initial value 𝛥𝐶𝐼
33 in 

the 𝐼th iteration is calculated as 

𝛥𝐶𝐼
33 =

𝑆33
𝐼

𝜕𝑆33
𝐼
𝐼

. (20)
𝜕𝐶33

3 
When this correction to the initial value 𝐶𝐼
33 in the 𝐼th iteration is 

added, a new value 𝐶𝐼+1
33  for (𝐼 + 1)-th iteration is obtained 

𝐶𝐼+1
33 = 𝐶𝐼

33 − 𝛥𝐶𝐼
33. (21)

The new value for 𝐶𝐼+1
33  is further inserted into 𝑆33. With every iter-

ation the value of 𝑆33 approaches 0. When 𝑆33 is close enough to 0, 
i.e. when it is smaller than the predefined error criterion, the iteration 
process stops. If that is not the case, the current value of the 𝐶𝐼+1

33  is 
again inserted into Eq. (20) to get a better approximation. When the 
iteration procedure is finished, the membrane and bending forces can 
be calculated according to 

𝑁𝛼𝛽 = ∫

ℎ∕2

−ℎ∕2
𝑆𝛼𝛽𝜈𝑔𝑑𝜃

3, 𝑀𝛼𝛽 = ∫

ℎ∕2

−ℎ∕2
𝑆𝛼𝛽𝜈𝑔𝜃

3𝑑𝜃3, (22)

where integration is performed numerically.

2.2. Kirchhoff–Love shell model

The initial shell configuration is described as 
𝑹(𝜉1, 𝜉2, 𝜉3) ∶= 𝑿(𝜉1, 𝜉2) + 𝜉3𝑨3(𝜉1, 𝜉2), (23)

where 𝜉1 and 𝜉2 are the convective curvilinear coordinates of the 
mid-surface, 𝜉3 ∈ [−ℎ∕2, ℎ∕2] is the through-the-thickness convective 
coordinate (ℎ is the thickness), 𝑿 is a vector field giving the position 
of the mid-surface and 𝑨3 is a unit mid-surface normal vector field. 
From here forward, the derivatives will be written in the shortened 
form as ( ),𝛼 = 𝜕( )∕𝜃𝛼 , while the capital letters will denote objects 
of the initial configuration and small letters will denote objects in the 
deformed configuration.

As a strain measure, the Green–Lagrange strain tensor will be used 

𝑬 ∶= 1
2
(𝒈 −𝑮), (24)

where 𝒈 denotes the metric tensor of the deformed shell configuration 𝑠
and 𝑮 of the initial shell configuration 𝑆. Because of the Kirchhoff–Love 
kinematic assumption, the structure of the above kinematic expressions 
remains the same also for the deformed configuration. Taking this 
into account, one can write the covariant Green–Lagrange strain tensor 
components as 
𝐸𝛼𝛽 = 𝜖𝛼𝛽 + 𝜉3𝜅𝛼𝛽 + (𝜉3)2𝜌𝛼𝛽 , and 𝐸𝑖3 = 0, (25)

where 

𝜖𝛼𝛽 = 1
2
(

𝑎𝛼𝛽 − 𝐴𝛼𝛽
)

, 𝜅𝛼𝛽 = −(𝑏𝛼𝛽 − 𝐵𝛼𝛽 ), 𝜌𝛼𝛽 = 1
2
(

𝑐𝛼𝛽 − 𝐶𝛼𝛽
)

.

(26)

Here, 𝐵𝛼𝛽 = −𝑨𝛼 ⋅ 𝑨3,𝛽 is the initial curvature at the considered mid-
surface point and 𝐶𝛼𝛽 is the third fundamental form also in the initial 
configuration. Following the usual approach, see e.g. [47], the effect of 
𝜌𝛼𝛽 will also be neglected.

The displacement vector, which connects the deformed and initial 
configurations for Kirchhoff–Love shells, is defined as 
𝑼 = 𝒙 −𝑿. (27)

For more details cf. [29].

2.2.1. Shell potential energy for neo-Hookean material model
Our DKQ-5 shell finite element [29] that is based on a Saint 

Venant–Kirchhoff material model is upgraded to a neo-Hookean ma-
terial model. The new finite element is named DKQ-5_neo. In this way, 
the computational model is more physically accurate for problems in-
volving larger compressive strains, since neo-Hookean does not exhibit 
nonphysical strain softening. The potential energy of this finite element 
is 

𝛱𝑒(𝑼 ) = 𝑊 (𝐸𝑖𝑗 )𝑑𝑉 𝑒 − 𝑼 ⋅ 𝒑 𝑑𝐴𝑒. (28)
∫𝑆𝑒 ∫𝑀𝑒
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Besides this equation an additional equation which imposes plane stress 
state is needed, 
𝜕𝑊
𝜕𝐸33

= 0. (29)

The strain energy density function 𝑊 (𝐸𝑖𝑗 ) of the neo-Hookean material 
model is defined with Eq. (1) which is used to calculate the variation 
of Eq.  (28)

𝛿𝛱𝑒(𝑼 , 𝛿𝑼 ) = ∫𝑆𝑒

𝜕𝑊
𝜕𝐸𝑖𝑗

𝛿𝐸𝑖𝑗𝑑𝑉
𝑒 − ∫𝑀𝑒

𝛿𝑼 ⋅ 𝒑 𝑑𝐴𝑒 = 0. (30)

As with the DKQ-5 finite element, DKQ-5_neo also requires numerical 
integration in the direction of the shell thickness. The functional in 
Eq. (28) also contains a volume integral which cannot be analytically 
evaluated with a neo-Hookean material model. However, it can be 
calculated with a 5-point Gauss integration rule in combination with 
the standard 3-point Gauss integration across the element thickness. 
This results in a 5 × 3 Gauss integration. The part of Eq. (28) relating to 
the external load can be calculated in the same way as with the DKQ-5 
finite element, with a 5-point Gauss integration rule.

2.3. 3D model

The 3D model contains no special kinematic assumptions. It uses 
the Green–Lagrange strain tensor given in Eq. (24). Metric tensors in 
initial and deformed configurations are written as 

𝑮 ∶= 𝐺𝑖𝑗𝑮𝑖 ⊗𝑮𝑗 , (31)

and 

𝒈 ∶= 𝑔𝑖𝑗𝒈𝑖 ⊗ 𝒈𝑗 , (32)

respectively.
The displacement vector for a 3D continuum is defined as 

𝒖 = 𝒙 −𝑹, (33)

where 𝑅 is a position vector of point in the reference space.
The covariant components of the metric tensor in initial configura-

tion are calculated as 

𝐺𝑖𝑗 = 𝑮𝑖 ⋅𝑮𝑗 , (34)

and the covariant components of a metric tensor in the deformed as 

𝑔𝑖𝑗 = 𝒈𝑖 ⋅ 𝒈𝑗 . (35)

The covariant basis vectors in the initial configuration are calculated 
with the first derivative of the position vector 𝑹, 

𝑮𝑖 = 𝑹,𝑖, (36)

while the covariant basis vectors in the deformed configuration are 
calculated with the first derivative of the sum of the position vector 
in the initial configuration and the displacement vector, see Eq. (33)

𝒈𝑖 = (𝑹 + 𝒖),𝑖. (37)

2.4. Formulation of 3D finite elements

The derivation of a 3D finite element is described in this section. 
This finite element is used in numerical examples for modeling of the 
thick, soft substrate onto which the shell is attached. The derived 3D 
finite element has 8 nodes and at each node 3 degrees of freedom in 
terms of displacements. The element formulation is upgraded with the 
theory of incompatible modes to make it less stiff.
4 
2.4.1. Interpolation of initial geometry of the 3D finite element
The geometry of the 3D finite element is interpolated with three 

linear Lagrange interpolation functions 

𝑁𝐼 (𝜉, 𝜂, 𝜁 ) =
1
8
{1 + 𝜉𝜉𝐼 , 1 + 𝜂𝜂𝐼 , 1 + 𝜁𝜁𝐼}, (38)

where 𝜉𝐼 = {−1, 1, 1,−1,−1, 1, 1,−1}, 𝜂𝐼 = {−1,−1, 1, 1,−1,−1, 1, 1} and 
𝜁𝐼 = {−1,−1,−1,−1, 1, 1, 1, 1}. The interpolation of geometry is written 
as 

𝑹 =
8
∑

𝐼=1
𝑁𝐼𝑹𝐼 , (39)

where the node position vectors 𝑹𝐼  at the 𝐼th node are written in a 
global basis {𝑬1,𝑬2,𝑬3} as 

𝑹𝐼 = 𝑅1𝐼𝑬1 + 𝑅2𝐼𝑬2 + 𝑅3𝐼𝑬3. (40)

2.4.2. Compatible displacements
The classic approach is used for compatible displacement field 

interpolation where three linear interpolation functions from Eq. (38) 
are used 

𝒖 =
8
∑

𝐼=1
𝑁𝐼𝒖𝐼 . (41)

The displacements at the 𝐼th node are written in a global basis 
{𝑬1,𝑬2,𝑬3}, 

𝒖𝐼 = 𝑢1𝐼𝑬1 + 𝑢2𝐼𝑬2 + 𝑢3𝐼𝑬3. (42)

To determine the deformation gradient as defined in Eq. (4), it is 
first necessary to compute the displacement gradient, ∇𝒖, given by 

∇𝒖 = 𝒖⊗ ∇ =
𝜕𝑢𝑖
𝜕𝑅𝑗

𝑬𝑖 ⊗ 𝑬𝑗 . (43)

Since 𝒖 in Eq. (41) does not depend on 𝑅𝑗 , ∇𝒖 cannot be calculated 
directly. Therefore, the displacement gradient has to be calculated with 
the help of the chain rule 
𝜕𝑢𝑖
𝜕𝑅𝑗

=
𝜕𝑢𝑖
𝜕𝜉𝑘

𝜕𝜉𝑘

𝜕𝑅𝑗
, (44)

where 𝜉1 = 𝜉, 𝜉2 = 𝜂 and 𝜉3 = 𝜁 . Expressions 𝜕𝑢𝑖∕𝜕𝜉𝑘 can be calculated 
directly from the interpolation of displacements in Eq. (41). Expressions 
𝜕𝜉𝑘∕𝜕𝑅𝑗 represent the components of the Jacobian matrix, which is 
defined as 

(𝑱 ) =
⎛

⎜

⎜

⎜

⎝

𝜕𝜉
𝜕𝑅1

𝜕𝜉
𝜕𝑅2

𝜕𝜉
𝜕𝑅3

𝜕𝜂
𝜕𝑅1

𝜕𝜂
𝜕𝑅2

𝜕𝜂
𝜕𝑅3

𝜕𝜁
𝜕𝑅1

𝜕𝜁
𝜕𝑅2

𝜕𝜁
𝜕𝑅3

⎞

⎟

⎟

⎟

⎠

, (45)

and its inverse as 

(𝑱−1) =

⎛

⎜

⎜

⎜

⎝

𝜕𝑅1
𝜕𝜉

𝜕𝑅1
𝜕𝜂

𝜕𝑅1
𝜕𝜁

𝜕𝑅2
𝜕𝜉

𝜕𝑅2
𝜕𝜂

𝜕𝑅2
𝜕𝜁

𝜕𝑅3
𝜕𝜉

𝜕𝑅3
𝜕𝜂

𝜕𝑅3
𝜕𝜁

⎞

⎟

⎟

⎟

⎠

. (46)

The covariant base vectors are defined as 

𝑮𝑗 =
𝜕𝑹
𝜕𝜉𝑗

=
𝜕𝑅𝑖
𝜕𝜉𝑗

𝑬𝑖. (47)

Multiplication of the covariant base vectors by 𝑬𝑘 in Eq. (47) leads to 

𝑬𝑘 ⋅𝑮𝑗 =
𝜕𝑅𝑖
𝜕𝜉𝑗

𝑬𝑘 ⋅ 𝑬𝑖 =
𝜕𝑅𝑖
𝜕𝜉𝑗

𝛿𝑘𝑖 =
𝜕𝑅𝑘
𝜕𝜉𝑗

. (48)

The expression in Eq. (48) represents components of the inverse Jaco-
bian matrix, 

(𝑱−1) =
⎛

⎜

⎜

𝑬1 ⋅𝑮1 𝑬1 ⋅𝑮2 𝑬1 ⋅𝑮3
𝑬2 ⋅𝑮1 𝑬2 ⋅𝑮2 𝑬2 ⋅𝑮3

⎞

⎟

⎟

. (49)

⎝ 𝑬3 ⋅𝑮1 𝑬3 ⋅𝑮2 𝑬3 ⋅𝑮3 ⎠
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The Jacobian matrix is now 

(𝑱 ) =
⎛

⎜

⎜

⎝

𝑬1 ⋅𝑮1 𝑬2 ⋅𝑮1 𝑬3 ⋅𝑮1
𝑬1 ⋅𝑮2 𝑬2 ⋅𝑮2 𝑬3 ⋅𝑮2
𝑬1 ⋅𝑮3 𝑬2 ⋅𝑮3 𝑬3 ⋅𝑮3

⎞

⎟

⎟

⎠

−𝑇

. (50)

Now all the components from the Jacobian matrix are derived and 
the displacement gradient ∇𝒖 in Eq. (43) can be calculated.

2.4.3. Incompatible modes
In Ref. [45] the theory of incompatible modes is described in detail. 

With the help of this theory the formulation for 3D finite elements is de-
rived. The entire formulation is based on the separation of displacement 
gradient into the compatible and incompatible parts. Such formulation 
of the displacement gradient is then used in the deformation gradient.

The displacement gradient is first divided into the compatible ∇𝒖
and incompatible �̃� parts 
𝑫 = ∇𝒖 + �̃�, (51)

where �̃� can be written as 
�̃� = �̃�⊗ ∇. (52)

Note that in general, the deformation gradient can be written as in 
Eq. (4). Since the displacement gradient is now written in the extended 
form with Eq. (51), the deformation gradient changes shape as well. 
This new deformation gradient will be denoted as 𝑭  and can be written 
as 
𝑭 = 𝑮 +𝑫 = 𝑮 + ∇𝒖 + �̃�. (53)

The compatible part ∇𝒖 is calculated normally from the interpolation 
of displacements as written in Section 2.4.2 and the incompatible part 
𝑫 is calculated from the new interpolation functions.

2.4.4. Incompatible displacement field
The incompatible displacement field �̃� is not directly interpolated. 

Instead the displacement gradient is interpolated with interpolation 
functions 𝑀𝑖(𝜉, 𝜂, 𝜁 ), 𝑖 = {1, 2, 3}, which are of the higher order than the 
interpolation functions with which compatible displacements are inter-
polated. The interpolation functions for interpolation of incompatible 
displacement gradient are 

𝑀𝐼 (𝜉, 𝜂, 𝜁 ) = {1 − 𝜉2, 1 − 𝜂2, 1 − 𝜁2}. (54)

The incompatible displacement gradient can be written as 

�̃� =
𝑛𝑖𝑚
∑

𝐼=1
∇𝑀𝐼 ⊗ 𝜶𝐼 , (55)

where 𝑛𝑖𝑚 is the number of condensed incompatible degrees of freedom 
of the finite element (9 in our case) and 𝜶𝐼  are the incompatible degrees 
of freedom of the element which are condensed. Because the interpo-
lation (55) cannot describe a constant stress field over the element, 
such as in the patch test, additional adjustments to these interpolations 
are needed. To do that, a minimal convergence requirement is derived, 
which imposes that the average value of the enhanced displacement 
gradient is zero in each element 

∫𝛺𝑒
�̃�𝑑𝑉 𝑒 = 𝟎, (56)

where 𝛺𝑒 represents the volume of the finite element. The modified 
interpolation can be now written as 

�̃� =
𝑛𝑖𝑚
∑

𝐼=1
∇�̂�𝐼 ⊗ 𝜶𝐼 , (57)

where fixed interpolation functions are defined as 

∇�̂�𝐼 = ∇𝑀𝐼 −
1
𝛺𝑒 ∫ 𝑒

∇𝑀𝐼𝑑𝑉
𝑒. (58)
𝛺

5 
If now Eq. (58) is inserted into Eq. (57) and integrate over the 
volume of the element 𝛺𝑒, the condition in Eq. (56) is satisfied. One 
can write 

∫𝛺𝑒
∇�̂�𝑖𝑑𝑉

𝑒 = 𝟎. (59)

Now all the variables in the extended version of the deformation 
gradient 𝑭  are known and can substitute 𝑭  for it in Eq. (12).

2.5. Potential energy of the 3D-Solid_neo finite element

The potential energy of the 3D element with incompatible modes 
can be written as 

𝛱𝑒(𝒖,𝑫,𝑷 ) = ∫𝛺𝑒
{𝑊 (𝑮 +𝑫) + 𝑷 ∶ (∇𝒖 − (𝑮 +𝑫))}𝑑𝑉 𝑒. (60)

Because of Eq. (53), the above functional can be written as 
𝑊 (𝑮 +𝑫) = 𝑊 (𝑭 ). (61)

Since the formulation of the 3D element contains incompatible modes, 
the deformation gradient 𝑭  in Eq. (12) can be replaced with 𝑭  with 
incompatible modes. The right Cauchy–Green deformation gradient 
with incompatible modes becomes 

𝑪 = 𝑭
𝑇
𝑭 . (62)

If the Green–Lagrange deformation tensor is written as 𝑬 = (𝑪−𝑮)∕2 =
(𝑭

𝑇
𝑭 −𝑮)∕2, the tensor 𝑪 can be also written as 

𝑪 = 𝑭
𝑇
𝑭 = 2𝑬 +𝑮. (63)

In our numerical simulations, the structures are subjected also to 
temperature load. Therefore, a related part has to be added to the 
Green–Lagrange deformation tensor 

𝑬 = 1
2
(𝑪 −𝑮) + 𝛼𝑡𝑮�̄� , (64)

where 𝛼𝑡 and �̄�  are the linear temperature expansion coefficient and 
change in temperature. It follows from Eqs. (63) and (64) that 

𝑪 = 𝑭
𝑇
𝑭 − 2𝛼𝑡𝑮�̄� . (65)

Furthermore, based on Eq. (62), the strain energy density function 
of the neo-Hookean material model from Eq. (1) can be written as 
𝑊 (𝑪) = 𝑊 (𝑭 ). (66)

We name the finite element with the strain energy density function 
Eq. (66) in functional Eq. (60), 3D-Solid_neo.

The minimum potential energy of the 3D-Solid_neo finite element, 
is calculated with the first variation of Eq. (60)

𝛿𝛱𝑒 = 𝑑
𝑑𝜀

[

𝛱𝑒(𝒖 + 𝜀𝛿𝒖,𝑫 + 𝜀𝛿𝑫,𝑷 + 𝜀𝛿𝑷 )
]|

|

|

|𝜀=0
= 0, (67)

and more precisely 

𝛿𝛱𝑒(𝒖, 𝛿𝒖,𝑫, 𝛿𝑫,𝑷 , 𝛿𝑷 ) = ∫𝛺𝑒

{

𝑷 ∶ ∇𝛿𝒖 +
(

𝜕𝑊
𝜕𝑭

− 𝑷
)

∶ 𝛿𝑫+

+ (∇𝒖 −𝑫) ∶ 𝛿𝑷 } 𝑑𝑉 𝑒.
(68)

Eq. (68) presents a weak form of the 3D-Solid_neo finite element. 
The volume integrals in this expression are calculated with a classical 
2 × 2 × 2 Gaussian integration rule.

3. Numerical simulations and experiments

In order to solve the system of equations by an incremental-iterative 
Newton–Raphson procedure (which is a part of the applied path-
following method), the equations have to be consistently linearized. 
However, it should be noted that variation and linearization were 
performed using Mathematica [48] and its add-on AceGen [49]. The 
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Fig. 1. Uniaxial wrinkling of a rectangular plate on a soft substrate. (a) Experiment, (b) Numerical simulation. Geometric properties of the plate (gray part) were: thickness 
ℎ = 0.22 mm, length 𝐿 = 102.0 mm, width 𝑤 = 30.0 mm, while the thickness of the substrate (pink part) was 𝐻 = 25.0 mm. Young’s moduli and Poisson ratios of the film and the 
substrate were: 𝐸𝑓 = 4.27 MPa, 𝐸𝑠 = 0.072 MPa and 𝜈 = 𝜈f = 𝜈s ≐ 0.49. An average wavelength obtained in the experiment was 𝜆exp = 3.98 mm (see the inset in panel a), while in 
simulation 𝜆num = 4.02 mm was obtained. The color scale represents displacements 𝑢3 in the normal direction to the plate surface.
derived finite elements were implemented in the AceFEM [49] com-
puter code. To solve the nonlinear system of equations, fairly robust 
arc-length procedures described in [50–52] were used.

Four experiments in which wrinkling was observed on plates and 
shells attached to thick substrates were performed. The (rectangular 
and circular) plates and (cylindrical and hemispherical) shells were 
essentially thin films made from polymer QSil 550 (gray color), which 
had a higher modulus of elasticity than the substrate made from the 
softer polymer Zhermack Elite Double 8 (pink color). Both polymers 
were initially liquid and then changed to a solid phase. Exactly 50 % 
by mass of a silicone oil was added to the substrate material, which 
served as a softener to (𝑖) reduce its Young’s modulus and thus increase 
the ratio between Young’s moduli of both materials and to (𝑖𝑖) pro-
nounce its shrinkage during solidification, resulting in compression in 
the plates and shells. Both polymers were firmly bonded together at 
the contact surface when the substrate material was poured onto the 
already solidified plates and shells. Moreover, no slip or delamination 
between the two materials was observed during the experiments within 
the prescribed constraints. Further details on the fabrication procedure 
are given in Appendix  A. The material properties of the films and the 
soft substrates were determined from the bending, compression and 
volumetric tests, see Appendix  B.

The substrate shrinkage was modeled by analogy – through cooling 
– and maintaining a constant temperature within the plates and shells 
throughout the analysis. This mirrored the experimental conditions 
where the shell was completely solidified before coming into contact 
with the initially liquid substrate (see Appendix  A). Since the tem-
perature difference was used in the analysis, we had to assign an 
appropriate value for the coefficient of thermal expansion for silicone 
materials 𝛼𝑇 = 9 ⋅ 10−6 K−1, which was taken from the literature. The 
value of 𝛼𝑇  had no influence on the shape of the deformation pattern; 
it only affected the magnitude of the temperature change required to 
induce wrinkling. As the temperature expansion coefficient was very 
small, the temperature difference required in the analysis was very 
high, and took values up to −4000 K, which is, of course, non-physical 
and has only numerical significance. Alternatively, one could also opt 
for the use of artificially larger 𝛼𝑇  instead.

3.1. Uniaxial wrinkling of a rectangular plate

Fig.  1(a) shows the uniaxial wrinkling on a rectangular plate caused 
by the shrinkage of the substrate. It is important to note that although 
the compressive stresses in the substrate are generally spatial, they 
are significantly larger in the longitudinal direction of the structure. 
As a result, and due to the free boundary conditions, wrinkling is 
predominantly uniaxial and occurs first around the mid-length of the 
plate. Therefore, wrinkles with larger amplitudes are found there, while 
they gradually decrease towards the two ends along the length.
6 
The average wavelength measured along the arc-length of the waves 
was 𝜆exp ≐ 3.98 mm. As the materials used are practically incompress-
ible (see Appendix  B), the arc-length of the deformed configuration 
is practically the same as that of the undeformed configuration. The 
results can thus be compared directly to the theoretical wavelength 
𝜆th = 3.74 mm, which is calculated from Eq. (20b) in [53]. A fairly 
good agreement with a relative difference of 6.1% is obtained.

In numerical simulations, 9733 DKQ-5_neo shell finite elements and 
116,796 3D-Solid_neo solid finite elements were used to model the 
response of the plate and the substrate, respectively. The nodes at 
the bottom of the plate were restricted to move only in-plane and a 
few points there (at the mid-length) were fixed to prevent rigid body 
motion. The material and geometric properties were the same as in 
the experiment, see caption of Fig.  1. The numerically determined de-
formed configuration in Fig.  1(b) shows excellent qualitative agreement 
with the experiment, as here too the first wrinkles appeared in the 
middle of the surface of the plate (where they are also more pronounced 
later) and gradually fade away towards both ends. Excellent agreement 
is also achieved quantitatively, since an average wavelength of 𝜆num =
4.02 mm obtained in the simulations differs only by 1.0% from the 
experiments.

3.2. Uniaxial (circumferential) wrinkling of a cylindrical shell

The second experiment to validate the developed computational 
model was made on a cylindrical shell, which, unlike the first experi-
ment, has curvature in one direction. The same procedure was followed 
in fabrication of this test specimen as for the uniaxial wrinkling ex-
periment. Once the plate was solidified and demolded, it was carefully 
placed on the inner surface of a cylindrical mold. Due to this fabrication 
process, the cylindrical shell was not continuous in the circumferential 
direction and had a small imperfection where the two edges met when 
it was placed in the mold. Next, a pink liquid silicone/silicone oil 
mixture was poured into the cylindrical mold and allowed it to solidify. 
Again, a tight adhesion formed between the shell and the substrate. 
More details on the fabrication procedure are given in Appendix  A. 
As the substrate material solidified and shrank, compressive stresses 
developed within the shell material, ultimately leading to wrinkling.

Fig.  2(a) shows the deformed shape of the cylindrical shell on a 
substrate. The wrinkles have formed uniformly around the circumfer-
ence of the shell and are aligned parallel to the cylinder’s longitudinal 
axis. This pattern is qualitatively similar to the uniaxial wrinkling 
experiment, but now curved along the principal curvature. The average 
wavelength measured in this experiment was 𝜆exp ≈ 5.68 mm while 
the theoretical prediction yielded 𝜆th = 5.27 mm, resulting in a relative 
difference of 7.3%.

In the experiment, the cylinder was completely filled with the 
substrate material. However, in the numerical analysis that followed, 
the inside of the substrate was made hollow to reduce the number of 
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Fig. 2. Uniaxial (circumferential) wrinkling of a cylindrical shell. (a) Experiment, (b) Numerical simulation. Geometric properties of the shell (gray part) were: outer diameter 
𝐷 = 59.3 mm, thickness ℎ = 0.1 mm, width (height) 𝐻𝑓 = 35.0 mm, while width (height) of the substrate (pink part) was 𝐻𝑠 = 50.7 mm. The material properties were the same as 
before. Note that unlike the experimental sample, the sample in the numerical simulation has a hole with diameter 𝑑 = 32 mm in the center. An average wavelength obtained in 
the experiment was 𝜆exp = 5.68 mm, while in simulation 𝜆num = 5.645 mm was obtained. The color scale represents displacements 𝑢3 in the radial direction.
3D solid finite elements used and decrease the computational time. 
Note that despite being hollow, the substrate remained sufficiently 
thick to promote localized deformation. The numerical analysis was 
conducted using 31,097 of our DKQ-5_neo elements and 443,244 3D-
Solid_neo finite elements. All nodes on the inner surface of the substrate 
were prevented from moving in the radial direction. In addition, nodes 
located on a circle at the mid-height of the cylinder were also prevented 
from moving in the vertical and tangential directions.

From the deformed shape depicted in Fig.  2(b), the wavelength 
along the circumference of the cylinder was evaluated, again measured 
along the arc length of the deformed configuration of the shell. Our 
analysis yielded an average wavelength of 𝜆num = 5.645 mm. When 
quantitatively comparing the numerically determined wavelength with 
the one observed in the experiments, a very good match with a relative 
difference of only 0.62% was found. However, unlike in the experi-
ments we observed that the amplitude of wrinkles was greater at the 
mid-height of the shell and diminished towards the edges in numerical 
simulations. We attribute this to the fixed boundary conditions at the 
mid-height of the cylinder that were imposed to prevent rigid body 
motion.

3.3. Wrinkling on a circular plate

Similarly to the first two experiments, again the (circular) plate 
was made first. Once the plate had solidified, it was placed in another 
cylindrically shaped mold. The plate was positioned on the circular 
face of the mold and the pink polymer/oil mixture was poured over 
it to fabricate the substrate which adhered to the plate in the process. 
The sample was left in the mold to minimize its bending that would 
otherwise occur during solidification because of the non-symmetric 
composition (through-the-thickness) of the whole system (the plate is 
only on one side). Because the plate was kept the mold, the diameter 
of the cylindrical mold had to be larger than that of the circular 
plate to reduce the effects of the edge that prevented the plate from 
freely deforming during shrinking of the substrate. In this case, the 
shrinkage during solidification of the substrate material induced an 
(approximately) homogeneous in-plane deformation field (far enough 
from the edge) that led to the formation of a corresponding wrinkling 
pattern in the form of a zigzag/labyrinthine pattern, as depicted in Fig. 
3(a).

To determine the average wavelength between neighboring chan-
nels, we had to identify some nodes at the peaks of the wrinkles on 
the deformed configuration first and measure the distances between 
these nodes by mapping them into the initial configuration. The mea-
sured wavelength of the experimentally obtained wrinkling pattern was 
7 
𝜆exp ≈ 4.82 mm, while the theoretical prediction yielded 𝜆th = 4.59 mm. 
The relative difference between both results was therefore 4.8%.

For the numerical analysis, we again used DKQ-5_neo and 3D-
Solid_neo finite elements. The plate mesh comprised 10,169 elements 
and the substrate mesh 141,468 elements. All vertical displacements 
on the bottom face of the substrate were disabled in the simulations as 
in the 1D flat case. To prevent rigid translation of the entire model, 
a small region of nodes in radius of 3 mm around the vertical axis 
of the cylinder at the bottom of the substrate was disabled to move 
also horizontally. It has to be noted that the boundary conditions in 
this case were again not an exact match to the ones in experiment, but 
yielded the most similar results. At the onset of wrinkling instability in 
the experiments, the wrinkles emerged across the entire plate almost 
simultaneously, while in numerical simulations they emerged first in 
the center of the plate and gradually spread towards the edge of 
the plate. An average wavelength computed numerically was 𝜆num =
4.786±0.194 mm, which means that only a 0.70% difference was found 
compared to experiments.

It is important to point out that all three examples so far had 
zero Gaussian curvature in an undeformed configuration so that the 
localized/discretized units of deformation (i.e. wrinkles) had to interact 
only among themselves in all the obtained wrinkling patterns. In the 
next example, wrinkling on hemispheres will be examined, adding 
another dimension of complexity, as the pattern must also interact with 
the non-zero Gaussian curvature of the substrate.

3.4. Wrinkling of a hemispherical shell

The most interesting wrinkling case investigated in this paper using 
the developed computational model involved a hemispherical shell on 
a soft substrate. To create the hemispherical shell, a coating technique 
was employed, as reported in [54]. Specifically, liquid silicone was 
poured over a steel ball from a ball bearing. Once the liquid silicone 
fully solidified, the ball was carefully removed from the silicone en-
closing the ball. Then the resulting shell was suspended upside down, 
supporting it at the edge that was created when the excess liquid 
polymer was drained from the shell due to gravity and gathered at the 
equator. Subsequently, the shell’s interior was filled with the mix of the 
pink liquid polymer–silicone oil to create the substrate. More details on 
the fabrication procedure are given in Appendix  A.

Upon solidification of the substrate material, subsequent shrinkage 
induced compression stresses within the shell. This phenomenon led to 
the formation of a wrinkling pattern comprising dimples radiating from 
the pole/apex towards the equator, as well as vertical channels at the 
equator (see Fig.  4). The presence of these channels can be attributed 
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Fig. 3. Wrinkling of a circular plate. (a) Experiment, (b) Numerical simulation. Geometric properties of the plate (gray part) were: thickness ℎ = 0.27 mm, diameter 𝐷𝑓 = 62.7 mm, 
while the substrate (pink part) had thickness 𝐻 = 30.0 mm and diameter 𝐷𝑠 = 80.0 mm. The material properties were the same as in the previous two experiments. An average 
wavelength obtained in the experiment was 𝜆exp = 4.82 mm, while in simulation 𝜆num = 4.786 ± 0.194 mm was obtained. The color scale represents displacements 𝑢3 in the normal 
direction to the plate surface.
Fig. 4. Wrinkling experiment of a hemispherical shell. Geometric properties were as 
follows: inner shell diameter 𝐷 = 50.0 mm, thickness ℎ = 0.27 mm. The material 
properties were the same as in the previous experiments.

to a thin hoop that formed after the excess material accumulated there 
due to drainage and provided additional local rigidity in the hoop 
direction. In our case, the shrinkage of the substrate without it leads 
to delamination between the shell and the substrate that tends to 
propagate further towards the apex as the shrinkage is progressing.

Using the same procedure as in [55], the average wavelength of this 
pattern was measured using 3D scanning and the concept of a Voronoi 
diagram. The obtained value was 𝜆exp ≈ 5.13 ± 0.41 mm. Based on 
the established geometric and material properties of the shell/substrate 
composite the theoretical wavelength was determined 𝜆th = 4.59 mm. 
This corresponds to a relative difference of 10.6% when compared to 
experimental observations.

To attest the proposed computational model also on a shell of 
non-zero Gaussian curvature, ten different numerical analyses of a 
hemisphere with different combinations of boundary conditions were 
performed. As it turns out, the aforementioned hoop at the equator and 
the fact that shrinkage at the equator is thus constrained, make it even 
more difficult to determine the boundary conditions. The illustrations 
of the boundary conditions, deformed shapes and geometrical proper-
ties with the results are shown in two sets of five samples in Figs.  5 and
6 in separate columns.

In example A, the shell was modeled using the developed DKQ-
5_neo shell finite element, while the substrate was modeled as a Win-
kler type foundation with coefficient of stiffness 𝐾𝑠 = 0.0580 N/mm3. 
The shell was subjected to surface pressure 𝑝. This example is also the 
only one where the Winkler’s foundation was used instead of the solid 
substrate and the surface pressure was used as an external load. In all 
other cases, the substrate was modeled using our 3D-Solid_neo finite 
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elements and the analogy of cooling the substrate was applied to induce 
the compression stresses in the shell.

With increasing external pressure load 𝑝, or equivalently decreasing 
the temperature 𝑇  in the substrate, the dimple pattern initially ap-
peared on the top of the hemisphere and later spread towards the edge 
of the hemisphere. From a quick comparison of the deformation shapes 
provided in the second column of Figs.  5 and 6 one can observe that the 
results are not the same in all the analyzed examples. It was noticed that 
the deformation patterns strongly depend on the boundary conditions. 
In example A, the dimples appeared over the entire shell surface, 
including near the edge (at the equator). A similar deformation pattern 
was observed in example C. In example B, where the bottom edge 
displacements and rotations were not disabled, the wrinkle pattern 
exhibits vertical parallel grooves. Grooves can also be seen in examples 
I and J in Fig.  6, although slightly away from the edge of the shell due to 
the fixed displacements and rotations there. We noticed an interesting 
phenomenon in the analyses, where displacements at the bottom sur-
face of the substrate were fixed. In examples D–F, a horizontal channel 
appeared parallel to the equator, such that the shell’s edge resembles 
an elephant’s foot. It is a phenomenon otherwise characteristic for an 
elasto-plastic buckling of thicker axisymmetric shells (see e.g. [56]) . 
In all these analyses all displacements were disabled at the edge or 
at least displacements in the vertical direction at the bottom of the 
substrate. Furthermore, also rotations at the edge of the hemisphere in 
sample B were disabled. In examples A–H the interior of the hemisphere 
was not completely filled with the substrate, while in cases I and J it 
was. As expected, comparison of the results from examples G and I, 
where the boundary conditions were the same, but G had a cavern in 
the substrate, revealed that the average wavelengths are practically the 
same. Surprisingly, the coverage with dimples is not. example G is only 
partially covered with dimples (emanating from the apex/pole), while 
example I exhibits the aforementioned parallel vertical channels at the 
equator.

In those analyses where the dimple pattern appeared over the 
majority of the shell’s surface we noticed that the distances between 
the dimples at the top of the hemisphere were smaller than those 
closer to the edge of the hemisphere. Therefore, in some analyses 
the distances between the dimples were calculatedcloser to the top 
of the hemisphere and separately also for the entire surface of the 
hemisphere. In Figs.  5 and 6 we labeled with 𝛼 the polar angle that 
defines an area around the polar cap that we used to calculate the 
average wavelength between the dimples. From the calculated average 
wavelengths between the neighboring dimples it was found out that the 
results obtained in examples H and J are the closest to the experimental 
data in Section 3.4. In these two analyses, the thickness of the shell was 
not modeled as constant, but varied it linearly with the polar angle 𝛼
from the top towards the bottom of the hemisphere. At the top of the 
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Fig. 5. The first set of five numerical simulations of wrinkling of a hemisphere. Each column represents illustrations with boundary conditions, deformed shapes and geometrical 
properties with results. The colors on the deformed shapes (used only for visual comparison) represent the intensity of radial displacements 𝑢3.
hemisphere the thickness was made slightly smaller than at the bottom, 
as observed in the experiment. The variation ranged from 0.25 mm to 
0.29 mm. The results of the numerical analysis of example H showed 
that the average wavelength between the dimples up to 𝛼 = 45◦ was 
𝜆num,𝛼=45◦ = 5.45 mm, which gives 𝜖num/exp,𝛼=45◦ = 6.17% of relative 
difference between the numerical and the experimental value 𝜆exp =
5.13 mm. In example J, the average wavelength between the dimples 
was 𝜆num,𝛼=40◦ = 5.54 mm at 𝛼 = 40◦, which gives 𝜖num/exp,𝛼=40◦ = 8.0% 
of relative difference compared to the experimental value. It can be 
observed that the calculated wavelength in case H is slightly closer to 
the experimental value. Based on the deformation shape one can see 
that in the vicinity of the edge the wavy deformation shape was not 
formed as in the experiment. In example J, the deformation shape was 
almost the same as the deformation shape obtained in the experiment 
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(see Fig.  4). In all other analyses, the average wavelengths between the 
dimples differ more significantly from the experimental value.

The results are summarized in Table  1 where all the experimental, 
corresponding numerical and theoretical results are gathered. It can be 
noted that the results from the experiments and simulations match quite 
well with the exception of the results for the hemisphere wrinkling, 
where boundary conditions were difficult to determine to match those 
in the experiments.

4. Conclusion

In this paper, we presented a new computational tool for accurate 
simulation of wrinkling instability observed in thin plates and shells on 
soft shrinking substrates. This tool will enable more rigorous studies 
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Fig. 6. The second set of five numerical simulations of wrinkling of a hemisphere. Each column represents illustrations with boundary conditions, deformed shapes and geometrical 
properties with results. The colors on the deformed shapes (used only for visual comparison) represent the intensity of radial displacement 𝑢3.
Table 1
Summary of the results.
 Example 𝜆exp (mm) 𝜆num (mm) 𝜆th (mm) 𝜖num/exp (%) 𝜖th/exp (%) 
 Uniaxial 3.98 4.0 3.74 1.0 6.1  
 Cylindrical 5.68 5.64 5.27 0.62 7.3  
 Circular 4.82 4.79 ± 0.19 4.59 0.70 4.8  
 Spherical 5.13 ± 0.41 5.45–6.02 4.59 6.17–17.32 10.6  

and the development of various applications mentioned in the intro-
duction, as well as insight into the fundamental physics of the process. 
Furthermore, it was demonstrated that experimental validation of such 
simulations can be achieved through comparatively simple fabrication 
10 
procedures of physical samples, which is crucial as it provides a ‘‘reality 
check’’ for any theoretical or numerical investigation.

More specifically, we simulated wrinkling of thin plates and shells 
with Kirchhoff–Love shell finite elements developed in [29] and the 
substrates with 3D hexahedral 8 node finite elements, whose formula-
tion we derived from the theory of incompatible modes. Compressive 
stresses were imposed on the structures through cooling of the sub-
strates, which mimicked shrinking during the solidification of the 
PDMS polymer in the experiments. It was noticed that the otherwise 
natural shrinking of this during solidification can be pronounced and 
controlled by the addition of a silicone oil. A neo-Hookean material 
model was implemented instead of St. Venant-Kirchhoff’s to obtain 
a more accurate description of material behavior in compression at 
larger strains. The deformation patterns in numerical analyses were 
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Fig. A.1. Fabrication procedure of the rectangular plate on a substrate. (a) Liquid polymer QSil 550 (gray color) was poured into a thin frame/mold that was made from an 
acrylic foil and attached to an acrylic plate. The thickness of the frame determined the thickness of the plate. (b) To achieve a uniform thickness another acrylic plate was carefully 
placed over the liquid polymer to squeeze out the access polymer by (c) pressing it against the frame. (d) Clamps were attached to the frame so that the film can solidify. (a) 
After approximately 48 h the top plate was removed and another frame/mold with a height that determined the substrate thickness was placed over the film. In the final step (f) 
a liquid polymer Zhermack Elite Double 8 (pink color) with the addition of a silicone oil 50% by mass was poured into the frame/mold. After approximately 1 h the sample was 
freed from all the constraints to shrink freely.
Fig. A.2. Fabrication procedure of the cylindrical shell on a substrate. Steps (a)-(d) are exactly the same as described in the caption of Fig.  A.1. The only, and key, difference is 
that the thin acrylic frame is attached onto another acrylic foil that is (e) removed from the clamps and cut to a length that corresponds to the circumference of the cylindrical 
mold (light gray color). After approximately 48 h (f) the thin acrylic foil with the solidified silicone film is bent into a cylindrical shape and placed inside the mold. The inset on 
the bottom shows an imperfect seam where the two ends of the film meet. (g) A liquid polymer Zhermack Elite Double 8 (pink color) with the addition of a silicone oil 50% by 
mass was poured into the frame/mold. After approximately 1 h the sample was freed from all the constraints to shrink freely.
very similar to the deformation patterns observed in experiments. A 
good agreement between the calculated wavelengths of the neighbor-
ing wrinkles from numerical simulations, experiments and theoretical 
predictions confirmed the predictive power of the proposed numerical 
procedure.
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Appendix A. Fabrication procedure of the plate and shell struc-
tures

Fabrication procedures of all the samples are depicted in Figs. 
A.1–A.4 with details given in their captions.
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Fig. A.3. Fabrication procedure of the circular plate on a substrate is exactly the same as described in the caption of Fig.  A.1.
Fig. A.4. Fabrication procedure of a hemisphere on a substrate. (a) A steel ball is 
placed at the center of an acrylic annulus that rests on a cup. (b) Liquid polymer QSil 
550 (gray color) was poured over the steel ball to make the hemispherical shell. (c) 
Excess polymer dripping from the edge of the annulus. (d) After approximately 48 h an 
aggregate of a solidified polymeric annulus and a hemisphere was turned upside down 
and placed over a cup. In the final step (e) a liquid polymer Zhermack Elite Double 
8 (pink color) with the addition of a silicone oil 50% by mass was poured into the 
hemisphere. After approximately 1 h the sample was freed from all the constraints to 
shrink freely.

Appendix B. Material testing

Bending, compression and volumetric tests were conducted to de-
termine the material constants needed in our simulations. These were 
Young’s moduli of the film and the substrate 𝐸𝑓  and 𝐸𝑠, respectively, 
and the corresponding volumetric tests to determine the Poisson’s ratios 
𝜈𝑓  and 𝜈𝑠.

B.1. Bending tests to evaluate 𝐸𝑓

Bending is the predominant deformation mode in the thin plates 
and shells that were used in the wrinkling experiments. Therefore, the 
goal was to determine the Young’s modulus 𝐸𝑓  with bending tests. We 
analyzed large displacements of three cantilever beams with the same 
cross section, different lengths and made from silicone polymer QSil 
550 – the same as the plates and shells. The beams were subjected 
only to gravity. Fig.  B.1 shows deformed shapes of the three beams, 
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together with numerically calculated deformed middle surface lines. 
The deformed middle surface lines were calculated with the DKQ-5_neo 
finite element by iteratively changing Young’s modulus of the material 
to get the best fit to the experiments. 

The beams had the following geometric properties: length 𝐿 =
{139.9, 109.9, 80.5} mm, width 𝑤 = 19.95 mm, thickness ℎ = 3.15 mm. 
Based on the snapshots of the displacement curve the Young’s modulus 
of the thin layer material was determined. The best agreement between 
middle surface lines and experiments was observed with the value 
of Young’s modulus of 𝐸𝑓 = 4.27 MPa. In the numerical analysis, 
equivalent surface load instead of the weight of the beams was used. 
The load was chosen based on the density of material, height of the 
beam and gravitational acceleration 𝑝 = 𝑔𝜌ℎ, where the density of the 
polymer was 𝜌 = 2004 ⋅ 10−9 kg/mm3.

B.2. Compressive test to evaluate 𝐸𝑠

The Young’s modulus of the substrate 𝐸𝑠 was evaluated with a 
compression test on a Zwick/Roell Z050 universal testing machine. 
A cylindrically shaped specimen made from Zhermack Elite Double 8 
polymer with diameter 𝑑 = 29.0 mm and height ℎ = 12.5 mm was placed 
between two rigid plates, as shown in Fig.  B.2(a). In the experiment the 
reaction force 𝐹  and the displacement 𝛥ℎ were measured continuously. 
The plot in Fig.  B.2(b) shows that a linear fit with the experimental 
curve makes an excellent approximation.

B.3. Volumetric tests to evaluate 𝜈𝑓  and 𝜈𝑠

The Poisson’s ratios of the plate/shell and the substrate material, 𝜈𝑓
and 𝜈𝑠, respectively, were determined with the volumetric test. Two 
cylindrical samples made from each material with diameter of 𝑑 =
10.0 mm and height ℎ = 20.0 mm were inserted into a bore that was 
made through the center of a steel cylinder and compressed with a 
steel piston with a slightly smaller diameter, as shown in Fig.  B.3(a). 
Once more, a linear fit was employed to approximate the measurement 
results, as illustrated in the diagrams in Fig.  B.3(b), depicting the 
applied force 𝐹  relative to vertical displacement 𝛥ℎ.

Data availability

Data will be made available on request.
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Fig. B.1. Bending test on beams subjected to self-weight. Three different lengths were tested: (a) 𝐿 = 139.9 mm, (b) 𝐿 = 109.9 mm and (c) 𝐿 = 80.5 mm. The thin red line represents 
the numerical fit to the mid-plane of the beam with Young’s modulus 𝐸𝑓 = 4.27 MPa.

Fig. B.2. Compressive test on the substrate material. (a) Experimental setup and a cylindrical sample made from Zhermack Elite Double 8 (pink color) with the addition of the 
silicone oil 50% by mass. The diameter and height of the cylindrical specimen were 𝑑 = 29.0 mm and height ℎ = 12.5 mm, respectively. (b) Applied force on the cylindrical sample 
as a function of vertical displacement. Based on the linear fit 𝐹 (𝛥ℎ) = 3.7813𝛥ℎ a Young’s modulus of 𝐸𝑠 = 𝛥𝜎∕𝛥𝜀 = 4𝐹 (𝛥ℎ)ℎ∕(𝜋𝑑2𝛥ℎ) = 0.072 MPa is obtained.

Fig. B.3. Volumetric tests on the film and the substrate materials. (a) Experimental setup and two cylindrical samples made from Zhermack Elite Double 8 (pink color) with 
the addition of the silicone oil 50% by mass and QSil 550 (gray color) that comprised the substrates and the plates/shells, respectively. (b) Applied force 𝐹 on the cylindrical 
sample as a function of vertical displacement for both materials. Based on the linear fit on the measurements 𝐹 (𝛥ℎ) = 5467.4𝛥ℎ for the gray and 𝐹 (𝛥ℎ) = 3353.9𝛥ℎ for the pink 
sample, the Poisson’s ratios 𝜈𝑓 = 0.4995 and 𝜈𝑠 = 0.4999 were determined for the respective materials. Both Poisson ratios were determined from the definition of the bulk modulus, 
𝐾 = −𝑝∕𝜀𝑉 , where 𝑝 = 𝐹∕𝐴, 𝜀𝑉 = 𝛥𝑉 ∕𝑉  and from the known relation from linear elasticity 𝐾 = 𝐸∕(3(1 − 2𝜈)). The symbols 𝐴, 𝑉  and 𝛥𝑉  represent the area of the cross section of 
the cylindrical sample, the initial volume of the sample and the change in volume. Thus the bulk moduli were 𝐾𝑓 = 1392.3 MPa and 𝐾𝑠 = 854.1 MPa for the respective materials.
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