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 A B S T R A C T

The design and development of morphing structures that transition from compact, transportable forms to stable, 
deployable configurations is crucial for advances in soft robotics, healthcare applications, and biomimetic 
systems. These structures often require customized functionalities and must self-deploy into precise target 
shapes. Therefore, the deformed shapes of such structures are usually prescribed and the parameters for 
their design are unknown. To obtain the fabrication parameters, the inverse problem needs to be solved, 
which quickly becomes quite challenging using conventional methods due to the high-dimensional nature 
of the inverse problem as well as the material and geometric nonlinearities. To overcome these challenges, 
we combine the best of the two worlds – physics and data – and present a data-driven approach for the 
inverse design of two-layered soft composites that utilize the principles of kirigami and strain mismatch to self-
deploy into different three-dimensional shapes. At the center of our methodology is the generative adversarial 
network, designed to generate the necessary fabrication parameters. By using a pre-trained simulator network, 
we condition the generative model to generate feasible and accurate fabrication parameters that are used to 
make composites that deploy into the target shapes. Our findings demonstrate that the generative model is able 
to effectively predict kirigami patterns and pre-stretch values required to realize complex three-dimensional 
shapes from simple and diverse planar designs. By performing simulations and precise desktop experiments, 
we compare the target with deployed shapes and demonstrate the predictive capacity of the method.
1. Introduction

Morphing structures have the ability to transform from one config-
uration to another. They can transform from a compact configuration 
into a predetermined, deployable form in which they are stable and can 
withstand the prescribed loading conditions. As such, they have been 
proven to be successful in the development of soft robots and their 
parts (Mungekar et al., 2023; Nojoomi et al., 2018; Rus and Tolley, 
2015), various self-deployable structures (Pezzulla et al., 2015; Siéfert 
et al., 2019; Wang et al., 2019), in healthcare applications (Brooks 
et al., 2022) and in the design of biomimetic structures inspired by 
nature (Gladman et al., 2016; Nojoomi et al., 2018).

Morphing slender structures are usually based on the mechanism 
principle (Holmes, 2019), consisting of rigid links and flexible joints. 
Another, more advanced approach to structure transformation is in-
spired by origami (Schenk and Guest, 2013; Dang et al., 2022), the 
traditional Japanese art of paper folding, which has been particu-
larly successful in developing deployable aerospace structures (Holmes, 
2019) that require little storage space but have a large surface area 
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when unfolded. These structures are more flexible, but still contain 
piece-by-piece (semi-)rigid parts and folds that serve as hinges. They 
may also require support structures and multiple springs to carry the 
elastic potential energy or other external actuators to unfold (Pez-
zulla et al., 2015; Siéfert et al., 2019). Unlike origami, the kirigami 
technique, which focuses on the proper arrangement of incisions and 
cutouts, does not rely on hinges or folds (Callens and Zadpoor, 2018; 
Choi et al., 2019). Therefore, structure transformation usually relies on 
the inhomogeneity of the structure, with stress gradients inducing the 
structure to morph into a different configuration (van Manen et al., 
2018). A well-established mechanism for inducing stress gradients that 
activate the self-deployment or spatial transformation of an originally 
flat or straight structure is based on swelling. Such approach can be 
activated by different principles, e.g., diffusion (Pezzulla et al., 2015), 
temperature (Nojoomi et al., 2018) or light (Wang et al., 2019). A me-
chanical analog to swelling – hydrostatic pressure – is also a promising 
example of actuation (Siéfert et al., 2019; Jin et al., 2020). Although 
these mechanisms enable the production of morphing structures that 
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can achieve different shapes and large deformations, they require an 
additional external stimulus or activation energy applied during the 
transformation process, such as solvent, temperature, light or pressure.

In contrast to the above mechanisms, strain mismatch can be ex-
ploited to program prescribed three-dimensional (3D) shapes into flat, 
two-dimensional (2D) structures during fabrication that autonomously 
deploy after fabrication. In this approach, self-deployable structures 
are made by stacking and bonding individual pre-stretched layers that 
store elastic potential energy during the fabrication process (Caruso 
et al., 2017; Fan et al., 2020; Guo et al., 2020). As a result, the so-
called strain-mismatched composites deform from originally flat (2D) 
configurations to deformed, pre-programmed 3D forms entirely on their 
own. They can even be stored and transported in rolled or crumpled 
configurations and only need to be released when desired to deploy 
into their final shape (Zavodnik et al., 2024).

To get the best out of these structures, it is necessary to know 
the exact fabrication parameters to ensure that they can be morphed 
into the target 3D shapes that meet all requirements and functionality. 
For this reason, several methods for form-finding of structures have 
been proposed that address different types of structures. Bletzinger 
et al. (2005) dealt with shells and plates loaded in the membrane 
state; Koohestani (2012) analyzed tensegrity structures, Su et al. (2019) 
investigated self-supporting reciprocal structures; and the morphing of 
ribbon-like structures using compressive buckling to form complex 3D 
shapes was studied in Xu et al. (2015, 2019) and Fan et al. (2020). 
To avoid possible self-collisions during the morphing phase, a method 
for encoding the temporal shape evolution was presented by Guseinov 
et al. (2020). In order to achieve an even greater number of attainable 
3D shapes, the parameter space defining the fabrication parameters 
needs to be drastically enlarged. This could be realized, for example, by 
modifying the bending stiffness via distributed modulus in functionally 
graded composites (Kansara et al., 2023) or by precisely encoding 
controlled in-plane growth into the structures, as shown by Nojoomi 
et al. (2021). They were able to successfully inversely predict the 
required input strain mismatch and apply the stretched material using a 
3D printer. Their algorithm was experimentally validated by producing 
small models of cars, fish and human heads. A similar inverse problem 
was also solved by van Rees et al. (2017), who fabricated 3D structures 
representing the shape of a flower, a human face and a canyon. Another 
approach to increase the parameter space is based on the aforemen-
tioned kirigami technique, for which there have already been several 
attempts (Xue et al., 2017; Zhang et al., 2022). In the case of kirigami, 
computational difficulties quickly arise, because the cutouts or designs 
need to be parameterized or stored as images, e.g., in 64 × 64 matrices. 
Therefore, we are dealing with an inverse problem with more than 
4096 parameters, including other fabrication parameters such as the 
amount of the strain mismatch and material variables. Evaluation of the 
objective function in such inverse problems, involving geometric and 
material nonlinearities, becomes too expensive, which is why several 
assumptions have to be made. This reduces the broadness of the final 
3D shapes, therefore, determining suitable fabrication parameters is 
still a major challenge.

To overcome these challenges, artificial intelligence (AI) and ma-
chine learning are becoming increasingly important and successful 
approaches in structures and materials design (Guo et al., 2021). For 
example, feed-forward neural networks (FNNs) have been used to in-
versely construct 2D binary designs for soft membranes, along with the 
pressure required to achieve the target shapes during inflation (Forte 
et al., 2022); and to predict 2D precursors for the buckling-controlled 
assembly of 3D frame structures (Jin et al., 2023). Such approaches 
save computational effort compared to the traditional optimization 
algorithms, but do not provide the ability to generate multiple different 
solutions as is common in inverse problems. A special branch of deep 
learning – generative modeling – has the potential to overcome these 
problems, as already demonstrated in engineering design (Regenwetter 
2 
et al., 2022). Generative adversarial networks (GANs) showed promis-
ing results in the field of topology optimization (Oh et al., 2019; 
Yu et al., 2019; Nie et al., 2021), design of soft morphing actuator 
beams (Brzin and Brojan, 2024) and also in the field of photonics (Kim 
et al., 2022; Liu et al., 2018). For example, Liu et al. (2018) extended 
the traditional GAN architecture with a pre-trained FNN to inversely 
design metasurfaces with a targeted manipulation of light behavior. 
Similar problems were solved by Wang et al. (2020), An et al. (2021) 
and Yeung et al. (2021), where a conditional GAN was used instead. 
Such approach eliminated the need for an additional FNN, since the 
critic network took over its role. In the field of materials design, 
GANs (Brown et al., 2023; Kim et al., 2020; Lee et al., 2024; Mao 
et al., 2020) and variational autoencoders (VAEs) (Cang et al., 2018; 
Yao et al., 2021) are popular choices for generating new material struc-
tures with tailored properties. However, generative models are not yet 
widely used in solving inverse problems of morphing and deployable 
structures. Ma et al. (2024) used a VAE coupled with the Bayesian 
optimization to design kirigami patterns that allow composites to self-
deploy into the 3D shapes desired by the user. They showed how 
physics-driven machine learning optimization can be used to generate 
kirigami designs for making various 3D shapes – from peanuts to 
flowers – with excellent agreement compared to the target shapes. 
The only drawback of their approach is the long computational time 
due to the finite element simulation running within the optimization 
loop. While generative models have already demonstrated their ability 
to help develop new materials and create fabrication parameters for 
the inverse design of functional shapes, a purely data-driven method 
that does not rely on classical optimization algorithms is yet to be 
developed.

In this work, we develop a data-driven inverse design framework 
that enables rapid and on-demand generation of fabrication parameters 
as it does not rely on the time-consuming finite element simulations. 
The method is used for designing self-deployable soft kirigami com-
posites that leverage a combination of two different concepts: strain 
mismatch and kirigami. The first concept provides the elastic potential 
energy to activate the transformation from an initial 2D into a final 
3D configuration. The second concept, the kirigami, creates a specific 
pattern in the initial configuration with properly placed incisions and 
cutouts, significantly increasing the number of attainable 3D shapes. 
We define the problem as an inverse problem, since, starting from 
the target 3D shape, we are interested in the fabrication parameters 
for producing a composite structure that deploys into this 3D shape 
when used. The fabrication parameters include a combination of design 
variables: the amount of induced elastic potential energy in the form 
of a homogeneous pre-stretch of the active layer and the (kirigami) 
cutting pattern of the passive layer (the layer that is not pre-stretched). 
The nature of the problem allows it to be solved using classical opti-
mization algorithms, which should take into account several types of 
nonlinearities. Since we consider slender structures that can deform 
significantly during the transformation process, the algorithms should 
take into account the theory of large displacements, the nonlinear 
(hyperelastic) material models and the fact that there can exist several 
design solutions for the same input conditions. All these nonlinearities 
make the algorithms complex, difficult to implement and knowledge-
demanding because the user needs to be familiar with the problem 
to fine-tune the parameters to obtain accurate solutions. To overcome 
these challenges, we employ deep generative models, in particular 
GANs, which have already proven useful in practice, especially in the 
field of materials design (Kim et al., 2020; Mao et al., 2020) and 
photonics (An et al., 2021; Liu et al., 2018). We condition the generator 
network with a pre-trained simulator network to enable the generation 
of not just feasible fabrication parameters, but also accurate ones that 
guarantee transformation into target shapes.

The remainder of the paper is organized as follows. The description 
of the inverse problem and its solution to solve it is given in Section 2; 
details on creation of training data and training process are given in 
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Fig. 1. The proposed inverse design framework for predicting fabrication parameters of self-deploying kirigami composites. The generator network predicts the fabrication parameters 
𝒅̃ – the kirigami pattern of the passive layer and the pre-stretch 𝜆 of the active (base) layer – based on the given target shape. It learns from the design feasibility score (𝒅̃)
provided by the critic network in the adversarial learning regime and the shape loss S calculated based on the predicted shape (𝒅̃) from the pre-trained simulator network.
Section 3; and the fabrication method to produce the composites is 
presented in Section 4. In Section 5, the results, including quantitative 
comparison with experiments, are presented and discussed; in Section 6 
alternative approaches are investigated; and in Section 7 conclusions 
are drawn.

2. Neural networks for inverse design

We start by defining the inverse problem of self-deployable soft 
kirigami composites, where the (final) target shapes, i.e., the 3D shapes 
of the transformed composite structures, are known and the fabrication 
parameters for the realization of these target shapes are unknown. The 
composites consist of two thin elastic layers that are bonded together 
during the fabrication phase. The active (base) layer, Fig.  1, has a 
circular shape with a diameter 2𝑟̄b, a thickness 𝑡b and consists of a 
material with the properties 𝒎b. During fabrication, the active layer is 
radially pre-stretched by an amount of 𝜆, defined as 𝜆 = 𝑟b∕𝑟̄b, where 𝑟b
is the radius of the stretched layer. Then a passive layer with a certain 
kirigami pattern, part of the fabrication parameters in Fig.  1, is bonded 
on top of the pre-stretched active layer. The passive (kirigami) layer 
has a thickness 𝑡k , consists of a material with the properties 𝒎k and is 
of such size that it always fits inside a circle with the diameter 2𝑟b.

Some parameters are fixed due to the practical limitations, e.g., ma-
terial parameters, while others, e.g., kirigami cuts of the passive layer 
and pre-stretch 𝜆, can be varied. These ‘‘free’’ parameters are termed 
hereafter as the fabrication parameters which have the greatest impact 
on the ability to achieve a targeted 3D shape. They are meant to be 
determined to ensure that the composite structures morph into the 
target shapes upon release after bonding is complete. The fabrication 
parameters are inversely predicted by the generator network, which 
is trained within a larger neural network framework consisting of 
three individual components (Fig.  1). The generator network and the 
critic network are part of the classical GAN, an unsupervised learning 
technique in which they compete with each other to generate new data 
with a similar distribution to the training dataset. The first is trained to 
generate new data – in our case the fabrication parameters 𝒅̃ – based 
on the provided information about the target shape 𝝉, together with a 
vector of random noise drawn from a uniform distribution 𝒛 ∼  (−1, 1). 
The second network, i.e., the critic network, is trained to recognize 
the authenticity of the generated fabrication parameters compared to 
a given sample 𝒅 from the library of feasible fabrication parameters. 
In other words, the critic network can be considered as an agent that 
evaluates feasibility (e.g., takes into account only pre-stretch values 
that satisfy 𝜆 > 1) by predicting the score of the generated sample (𝒅̃)
and the score of the training sample (𝒅). The predicted values are used 
3 
to calculate the design feasibility (critic) loss C, which evaluates the 
distance between the generated (fake) fabrication parameters 𝒅̃ and the 
actual (real) 𝒅 from the library of feasible fabrication parameters. In 
this study, we used the gradient penalty (Gulrajani et al., 2017; Petzka 
et al., 2018) to extend the critic loss,
C = (𝒅̃) − (𝒅) + 𝛾

(

max(0, ‖∇(𝒅̂)‖2 − 1)
)2 ,

where 𝒅̂ = 𝜖𝒅+(1−𝜖)𝒅̃ is the interpolation between 𝒅 and 𝒅̃, 𝜖 ∼  (0, 1)
is a random number and 𝛾 is the penalty coefficient (𝛾 = 10 was used 
in this study). No tuning was performed for this parameter, because 
according to Petzka et al. (2018), one-sided penalization leads to a 
lower sensitivity to the value of this parameter.

A pure GAN framework (Arjovsky et al., 2017; Gulrajani et al., 
2017) is not sufficient to generate accurate fabrication parameters 
which can be used to produce composite structures with target shapes. 
If relying only on the critic network that is only providing the informa-
tion about the feasibility, the generated fabrication parameters would 
be feasible and have a similar distribution to the training dataset, but 
the fabricated composites would deviate from the target shapes. The 
solution lies in additional conditioning of the generator network with 
a pre-trained simulator network that is able to predict the deformed 3D 
shape of the composite (𝒅̃) based on the provided fabrication parame-
ters, similar to Liu et al. (2018). The predicted deformed shape is used 
to calculate the shape loss S, which together with the feasibility score 
forms the generator loss,
G = −(𝒅̃) + 𝜔S.

The cost function – average of the generator losses in the batch – guides 
the generator network to generate not only feasible but also appropriate 
fabrication parameters that ensure morphing of the composites into 
user-defined target shapes, Fig.  1. Here, the parameter 𝜔 is used for 
the trade-off between feasibility score and shape loss. It was fine-tuned 
within the hyperparameter study of the neural network framework, see
Supplementary material.

The aforementioned shape loss S is defined as a linear combination 
of two values, i.e., the loss between the target shape and the predicted 
shape, calculated according to the Huber loss function , and the 
structural similarity index measure (SSIM),
S = 𝛿(𝝉 ,(𝒅̃)) + (1 − 𝛿)(1 − SSIM(𝝉 ,(𝒅̃))).

The linear combination is defined by parameter 𝛿 which is of the same 
value as it was determined in the hyperparameter study of the simulator 
network. Details about the hyperparameters, along with the neural 
network architectures, can be found in the Supplementary material.
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Table 1
Geometric and material properties for modeling soft kirigami composites. The units are 
millimeter (mm), megapascal (MPa), and kelvin (K).
 Parameter Value  
 2𝑟b 64 mm  
 𝑡b 1.35 mm  
 𝐶b

1 0.04918 MPa  
 𝐶b

2 − 0.01545 MPa 
 𝛼b − 1 K−1  
 𝑡k 2.20 mm  
 𝐶k

1 0.28070 MPa  
 𝐶k

2 − 0.07222 MPa 
 𝛼k 0 K−1  

3. Dataset generation and training

In order to train the generator network within the proposed neural 
network framework, which we refer to as the inverse design framework, 
a training dataset had to be created first. This is usually done using 
the finite element method (FEM) or other similar numerical methods. 
However, such approaches are often too time-consuming, as it can take 
up to several days or even weeks to create a sufficiently large and 
diverse training dataset, as Ma et al. (2024) report. We therefore chose 
a hybrid approach that relies on both FEM and AI. The former was 
used to create an initial subset of the training dataset that was used to 
train the AI part – the simulator network and an additional generator 
network, which later helped to expand the initial subset into the full 
training dataset and make it more diverse.

3.1. FEM for initial training dataset

First, we have sampled 9000 different kirigami patterns by taking 
advantage of the 2-fold reflectional symmetry. This assumption not 
only allowed us faster computation times in the later FEM phase, but 
also gave us a good basis for the inverse design, since many man-
made or naturally occurring structures exhibit this type of symmetry. 
Therefore, the kirigami pattern was first constructed in one quadrant by 
augmenting the randomly placed cutouts, similar to Ma et al. (2024). 
The full kirigami pattern was then created by mirroring the obtained 
pattern twice over the vertical and horizontal symmetry axes (details on 
pattern creation are explained in the Supplementary material). The pre-
stretch values were also taken randomly from a uniform distribution 
𝜆 ∼  (1.18, 1.22). The selected range may seem rather narrow, however 
as explained in the following paragraphs, we included also the lower 
values of pre-stretch to cover a wider range of target shapes.

The composites were modeled using two-layered, four-node quadri-
lateral shell elements and a two-parameter, non-compressible, hypere-
lastic Mooney–Rivlin material model. The pre-stretch was simulated as 
an isotropic thermal expansion according to the relation 𝜆 = 𝜀 + 1 =
𝛼b𝛥𝑇 + 1, where 𝜀, 𝛼b and 𝛥𝑇  represent the strain, the coefficient of 
linear thermal expansion and the temperature difference, respectively. 
The thermal expansion analogy to stretching was applied only to the 
active layer, while the response of the passive layer (which was not 
stretched) was not temperature dependent (𝛼k = 0 in Table  1). The 
composites were fixed at the coordinate (0, 0) and symmetry boundary 
conditions were applied at the symmetry axes. The geometrical and 
material properties, 𝒎b = {𝐶b

1 , 𝐶
b
2 , 𝛼b} and 𝒎k = {𝐶k

1 , 𝐶
k
2 , 𝛼k}, are shown 

in Table  1. The Mooney–Rivlin material constants for the base and 
the kirigami layer, which are made of a two-component silicone-based 
elastomers, Zhermack Elite Double 8 and Elite Double 32, respectively, 
were determined from tensile tests (see Supplementary material for de-
tails). All simulations were performed using ANSYS simulation software 
controlled by a Python script.

In each simulation we computed three deformed structure shapes 
for each kirigami pattern by storing the results at two intermediate load 
steps, in addition to the final load step where the pre-stretch reached 
4 
the maximum set value 𝜆. This approach allowed us to capture the 
deformed shapes also for pre-stretch values lower than in the range 
of between 1.18 and 1.22. Due to the symmetry and the intelligent 
kirigami composite-to-mesh translation, we were able to reduce the 
number of finite elements to only 973 without significantly decreasing 
the computational accuracy. This was done by linking every unique 
section of the sampled kirigami pattern with a pre-defined structured 
finite element mesh. All 26,595 samples were therefore computed in 
about 50 h (theoretically, 27,000 deformed shapes should have been 
computed from 9000 kirigami patterns, but only the unique ones were 
kept), since every simulation was completed in an average of 20 s. This 
is significantly faster compared to the simulation time of roughly 2
min that is needed if every individual pixel of the kirigami pattern is 
meshed with a 3 × 3 mesh, resulting in more than 7200 finite elements. 
However, linking every unique section of the kirigami pattern with a 
pre-defined mesh is only possible for the sampled kirigami patterns and 
thus beneficial for training dataset construction. The reason behind this 
is explained in Section 3.2.

To simplify data storage and increase compatibility with convo-
lutional neural networks, each deformed 3D composite structure was 
stored as a 64 × 64 pixel 1-channel image of the projected 𝑧-
displacements. The corresponding fabrication parameters were simi-
larly stored as a 64 × 64 pixel 2-channel image, with the first channel 
representing the kirigami pattern and the second representing the pre-
stretch value, repeated 64-times to form a complete image channel 
(the pre-stretch is homogeneously applied to the entire active layer, 
however to make it compatible with the convolutional neural networks, 
it was stored as a matrix representing an image channel). Every single 
pixel of the first channel with a value 1 represents the uncut material 
and every single pixel with a value −1 represents a void – cut and 
removed material from the passive layer.

3.2. AI for expanding the training dataset

To expand the training dataset, we used two neural networks, as 
schematically shown in Fig.  3a. The first, a generator network trained 
in a classical GAN framework (Arjovsky et al., 2017; Gulrajani et al., 
2017), is used to sample new kirigami patterns given only a uniformly 
sampled noise 𝒛 ∼  (−1, 1). For simplicity and to avoid confusion 
with the inverse design framework, we name it as the data generation 
framework. The second, the simulator network, replaces FEM to dras-
tically reduce the computation time by multiple orders of magnitude 
(several thousands of samples can be prepared in a few seconds). The 
trained simulator network achieved SSIM and MSE scores of 0.964 and 
0.00030 on the test dataset, respectively, indicating that the use of 
the simulator network is suitable to expand the training dataset. The 
trained simulator network also served as a pre-trained network to help 
train the generator network from the inverse design framework. Details 
on the training of the generator network from the data generation 
framework and the simulator network are explained in Supplementary 
material together with the architectures of the neural networks and the 
hyperparameter study.

In this way, we computed 42,000 additional training samples and 
extended the training dataset to 68,595 training pairs consisting of fab-
rication parameters and the corresponding deformed structure shapes. 
The AI-generation and AI-simulation of 42,000 additional training sam-
ples took just 7.3 s which is a negligible amount of time. On the other 
hand, if we had used the classic FEM approach (same as for preparing 
the initial training dataset) it would theoretically take up to 78 h to 
expand the training dataset. Moreover, if we wanted to use the AI-
generated kirigami patterns (by the generator network from the data 
generation framework) and calculate the deformed shapes with FEM 
instead of the simulator network, it would theoretically take more than 
1400 h which is unfeasible.

The data distributions of the initial training dataset constructed 
using FEM and the AI-generated training dataset are shown in Fig.  2. 
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Fig. 2. Data distributions of the initial training dataset and the AI-generated training 
dataset used to expand the initial one, for (a) kirigami patterns, (b) pre-stretch values 
and (c) deformed structure shapes.

From the sampled kirigami patterns we randomly chose 1000 samples 
and a proportionate amount (i.e., 4600 samples) of the generated 
ones by the generator network from the data generation framework. 
We employed a pre-trained convolutional neural network VGG-16 (Si-
monyan and Zisserman, 2015) without the fully-connected dense layers 
to extract high-dimensional features of both datasets. We reduced 
their dimensionality into 2D by using t-distributed stochastic neighbor 
embedding (t-SNE) (van der Maanen and Hinton, 2008) and overlaid 
the plots in Fig.  2a. We can see that the data points coincide, indicat-
ing that the generator network from the data generation framework 
successfully modeled the data distribution of the sampled kirigami 
patterns. Next, we compared the distributions of the pre-stretch values 
that were used in the FEM simulations and the ones that were sampled 
to expand the training dataset, Fig.  2b. Sampling was done in range 
𝜆 ∼  (1.08, 1.22) as shown in Fig.  3a. With this method we were able 
to capture the required range of pre-stretches more uniformly. Finally, 
we randomly selected 1000 FEM-calculated deformed shapes and a 
proportionate amount (i.e. 1600 samples, since a ratio between 26,595 
FEM-computed samples and 42,000 AI-generated samples is roughly 
1.6) of AI-generated ones. Similar as before, we employed VGG-16 and 
t-SNE to extract the features and reduced their dimensionality. The 
embeddings are plotted in Fig.  2c where one can see that the data points 
mainly coincide as expected and moreover, that few new clusters are 
present indicating an increase in training dataset diversity.
5 
To check the accuracy of the expanded training dataset, we ran-
domly selected different kirigami patterns created by the generator 
network from the data generation framework and the corresponding 
predicted deformed shapes. Four post-processed examples are shown 
in the leftmost column (‘‘sample’’) and their corresponding predicted 
shapes in the second column from left (‘‘predicted shape (2D)’’) in Fig. 
3b. To be able to successfully convert the generated kirigami patterns, 
that included some unwanted artifacts, into binary images and there-
fore to construct finite element meshes for simulation, we employed a 
simple post-processing rule that converted all pixel values below 0.5 
to voids (values −1) and vice-versa (pixel values equal or above 0.5 
to values 1 that represent material). From now on, if the kirigami 
patterns are presented in green color, it means that the generator 
network outputs were post-processed. Similarly, if the kirigami patterns 
are displayed in grayscale (like in Fig.  4c), the kirigami patterns are 
not post-processed. For each combination of fabrication parameters, we 
calculated the deformed shape using FEM. In this case, the kirigami 
composite-to-mesh translation could not be used, because the generated 
kirigami patterns do not necessary overlap with the pre-defined finite 
element mesh sections and therefore every individual pixel had to be 
meshed separately. The results of the simulations are shown in the 
third column (‘‘simulated shape (2D)’’) in Fig.  3b. Then, we performed a 
numerical comparison, i.e., computed the relative difference between 
the predicted and the simulated shape, which is shown in the fourth 
column (‘‘difference’’) in Fig.  3b. In the last two rightmost columns in 
Fig.  3b (‘‘predicted shape (3D)’’ and ‘‘simulated shape (3D)’’) we have 
added the plots showing the predicted and simulated shapes in 3D to 
help with the visualization of the deformed shapes (the colors represent 
the 𝑧-displacements relative to the plane 𝑧 = 0).

3.3. Training for the inverse design

With the appropriately expanded training dataset, we started train-
ing the generator network within the inverse design framework using 
the pre-trained simulator network. The plot of the negative critic losses 
is shown in Fig.  4a and shows that the training ended at 150,000 
generator iterations (the critic network was trained five times per gen-
erator iteration). The weights of the generator network were saved at 
predetermined generator iterations and used to evaluate the model on 
the test dataset. Fig.  4b shows the SSIM scores at these predetermined 
iterations. It can be clearly seen that they converge above 0.900, which 
is the point at which we stopped the training procedure. The inset in 
Fig.  4b shows a randomly selected target shape from the test dataset. It 
was used to visualize the convergence of the training procedure, Fig.  4c, 
where the generated kirigami patterns and the corresponding predicted 
3D shapes are shown at the generator iterations marked in Fig.  4a. The 
quality of the generated kirigami patterns and the similarity between 
the target and predicted 3D shapes clearly improve and correlate with 
the curves shown in Fig.  4a and b. Plot of both components of the 
generator losses can be found in the Supplementary material.

4. Experiments

In order to prove the effectiveness of our proposed method, we also 
tested the results experimentally. To carry out the experiments, we 
first developed a device to homogeneously pre-stretch a circular plate 
(active layer) by stretching it over a cylinder, Fig.  5a. The apparatus 
consists of 3D-printed parts, an acrylic plate for securing the active 
layer and some fastening elements.

The fabrication process is illustrated in Fig.  5b–g. First, the base 
layer is securely attached to the flange with an acrylic plate and some 
fasteners (Fig.  5b). The flange is pressed over the cylinder to pre-stretch 
the base layer by the amount defined by 𝜆, which is a fabrication 
parameter (Fig.  5c). The pre-stretching is always checked by measuring 
the radial displacements of the auxiliary points marked on the base 
layer. A 3D-printed mold representing the negative of the kirigami 
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Fig. 3. Expansion of the training dataset for training the inverse design framework. (a) A trained generator network from the data generation framework is used together with 
the simulator network to expand the training dataset from the original approximately 27,000 to approximately 69,000 training pairs. (b) The adequacy of the new training pairs 
was checked with FEM (4 random samples were selected for the presentation). The columns from left to right show the generated kirigami patterns, the predicted 2D shapes using 
the pre-trained simulator network, the results from FEM, and the absolute error between the predicted and simulated shapes. The predicted and simulated 3D shapes are displayed 
on the right to help visualize the deployed composites. Symbol ℎ denotes to the height of the structure while the colors represent the 𝑧-displacements relative to the plane 𝑧 = 0. 
The units are in mm.
pattern is positioned in the center on the top of the base layer. The 
silicone-based elastomer still in liquid form is poured into the mold 
(Fig.  5d). Another acrylic plate and weights are placed on top of the 
mold to ensure a uniform thickness during the curing phase (Fig.  5e). 
After the curing is complete, the negative kirigami mold is removed 
(Fig.  5f). The excess material is cut and the composite self-deploys into 
a 3D-shaped structure (Fig.  5g).

5. Results and discussion

In this section, we present and discuss the inverse design results of 
various target shapes for which we inversely predicted the fabrication 
parameters. We took inspiration from Ma et al. (2024) and designed 
different target shapes, such as a dome (a), a floppy hat (b), a flower (c), 
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a peanut shell (d), a Pringle chip (e), a pyramid (f), and an inverted ship 
hull (g). The 3D target shapes were designed using the 3D modeling 
software SOLIDWORKS and are shown in the first column (‘‘target shape 
(3D)’’) in Fig.  6.

First, the target shapes were exported to an STL format which can 
be read by a Python script, through which the designs were converted 
into 64 × 64 pixel images of projected 𝑧-displacements, second column 
(‘‘target shape (2D)’’) in Fig.  6. A rule was implemented here to ensure 
that the projected center of the structure always lies on the plane at 𝑧 =
0 mm. The symmetric parts of the normalized images in [0, 1], together 
with the noise vector, served as inputs to the trained generator network 
from the inverse design framework, which generated the fabrication 
parameters – the kirigami patterns and the pre-stretch values 𝜆 shown 
in the third column (‘‘solution’’) in Fig.  6. The generated fabrication 
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Fig. 4. Training of the inverse design framework and the development of the generated 
kirigami patterns. (a) Plot of negative critic losses correlating with the quality of the 
generated kirigami patterns – a random sample is shown to demonstrate the quality 
improvement. (b) During the training process, the SSIM also converges, indicating the 
improvement in accuracy – the predicted shape using the pre-trained simulator network 
converges visibly towards the target shape. (c) The quality of the generated kirigami 
patterns and also the accuracy of the predicted 3D shape improves during training.

parameters were first verified numerically. We simulated the deformed 
shape using FEM and plotted the results in the fourth (‘‘simulated shape 
(2D)’’) and sixth column (‘‘simulated shape (3D)’’) in Fig.  6. The FEM 
simulations were performed on post-processed kirigami patterns as de-
scribed in Section 3.2. The 2D representations of the simulated shapes 
can be directly compared with the 2D representations of the target 
shapes. For simplicity, we have shown the absolute errors between 
the simulated and target shapes in the fifth column (‘‘differences’’) in 
Fig.  6. We have also provided the numerical values of the SSIM and 
MSE scores between the simulated and target shapes, which show a 
relatively good agreement. At this point, we have to emphasize that 
the SSIM scores served as the main metric for evaluating the results and 
were calculated on normalized images, so the dynamic range, i.e., the 
difference between the maximum and minimum allowable values, was 
always set to 1. If the SSIM scores were calculated on images where the 
differences between the minimum and maximum values were smaller 
than the set dynamic range, the differences between the simulated and 
target shapes would be less visible and would have less influence on 
the calculation, so the SSIM scores would be higher (above 0.900, as 
we tested).
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Fig. 5. Fabrication method for self-deployable soft kirigami composites. (a) A circular 
plate can be homogeneously stretched over the cylinder by pressing down the flange. 
The contact surface between the plate and the cylinder is lubed to reduce friction effects 
as much as possible. (b–g) Pictures taken during the fabrication of the flower shape. 
The active layer is placed over the cylinder, fixed with a flange (b) and stretched by 
a certain amount (c). A negative kirigami mold is positioned in the middle, a mixture 
of the silicone-based elastomer is poured into it (d) and covered with an acrylic plate 
to cure (e). After the top layer of the composite has cured, the mold is removed (f) 
and the excess material is cut off. Due to the elastic potential energy stored during the 
fabrication, the newly formed composite structure self-deploys into the target shape by 
itself (g).

The generated fabrication parameters were additionally verified ex-
perimentally — we fabricated the structures that turned out to be very 
similar to the target structures in their final configuration, see the last 
column (‘‘experiment ’’) in Fig.  6. To facilitate the comparison between 
the target, the simulated and the fabricated 3D shapes, we added the 
height of each target, simulated and fabricated structure. By comparing 
the values, a relatively good agreement can be found, however in some 
cases the discrepancies are larger, e.g., when comparing the height of 
the fabricated peanut shape (Fig.  6d) to the target and simulated ones, 
and in case of the Pringle chip shape (Fig.  6e). The causes for the first 
one can be related to the fabrication process, since the simulated height 
is closer to the target one than the height of the fabricated structure. 
It is possible that unspotted air bubbles became trapped during the 
fabrication of both the active and passive layers, changed the properties 
of the material and consequentially had a significant impact on the 
deformed shape. The reason for the second one can be assigned to 
insufficiently generated fabrication parameters. Perhaps the generator 
network was unable to generate a design with increased pre-stretch 
value that would better relate to the target shape. For this reason we 
tried to artificially increase the pre-stretch value for this particular 
kirigami pattern from 𝜆 = 1.114 to 𝜆 ∈ {1.12, 1.13, 1.14}. We obtained a 
better match between the height of the target (ℎ = 18.4 mm) and new 
simulated shapes (ℎ ∈ {13.6, 14.3, 14.9} mm), however the SSIM scores 
dropped from 0.889 to {0.861, 0.786, 0.720}, respectively, indicating a 
poorer shape match. Although the heights differ in these two cases, the 
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Fig. 6. Results of the inverse design for different shapes representing a dome (a), a floppy hat (b), a flower (c), a peanut shell (d), a Pringle chip (e), a pyramid (f) and an 
inverted ship hull (g). The columns from left to right show the designed 3D target shapes, the representation of the target shapes in 2D, the generated fabrication parameters, the 
simulated shapes from the generated fabrication parameters using FEM, and the absolute error between the target and simulated shapes. The 3D shapes were added to help with 
the visualization of the simulated shapes and to compare them with the experimentally fabricated shapes (last column from right). Symbol ℎ denotes to the height of the structure 
while the colors represent the 𝑧-displacements relative to the plane 𝑧 = 0. The units are in mm.
overall resulting shapes (simulated and fabricated) can still be linked 
to the target ones with significant shape similarity.

We mentioned that we considered the 2-fold reflectional symmetry 
when preparing the training dataset. The results show that the gen-
erator network (from the inverse design framework) is not only able 
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to generate the fabrication parameters for shapes that have a 2-fold 
reflectional symmetry, i.e., the shapes of peanut shell, Pringle chip or 
ship hull. We have also successfully generated the solutions for the 
shapes with rotational symmetry (i.e., the dome shape in Fig.  6a) or 
a 4-fold reflectional symmetry (i.e., the shapes of the floppy hat, the 
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flower and the pyramid in Fig.  6b, c and f, which was also part of 
the Ma et al. (2024) interest. For example, we can see that the shape 
of the floppy hat (Fig.  6b) has a 4-fold reflectional symmetry, but the 
corresponding generated kirigami pattern has a 2-fold reflectional sym-
metry, although it is very similar to the 4-fold reflectional symmetry. 
In contrast to the floppy hat example, the generated kirigami pattern 
for the flower shape has a perfect 4-fold reflectional symmetry and the 
comparison shows some discrepancies. Nevertheless, the simulated and 
experimentally fabricated shapes are very similar to the target shape 
and with a little imagination the structure can be seen as a flower. In 
the case of the pyramid shape in Fig.  6f, the generator network (from 
the inverse design framework) was again able to inversely predict a 
perfect kirigami pattern that has 4-fold reflectional symmetry and is 
also similar to the design obtained by Ma et al. (2024). If we compare 
other kirigami patterns of the generated fabrication parameters with 
the results of Ma et al. (2024), we can see that we obtained different 
solutions for very similar target shapes. This is due to the slightly 
different approach for preparing the training data and also due to the 
fact that we are dealing with a one-to-many mapping problem, where 
different solutions lead to almost the same final shapes of the composite 
structures.

We have compared also the computational times required to gener-
ate the fabrication parameters with the competing approach from Ma 
et al. (2024). They report that they were able to reduce the number 
of forward computations from millions to just around 100, which is a 
remarkable achievement, however to generate one solution, roughly 5
h of computational time is still required. In contrast, our approach is 
able to generate tens of different designs in a matter of few seconds. 
The reason for this is that we use a trained neural network model (the 
generator network) to generate solutions, while the approach from Ma 
et al. (2024) uses a trained decoder network inside the optimization 
loop. Also, to make use of our model, the generator network needs to 
be trained, which requires time to prepare the training dataset (roughly 
50 h as we have stated) and to complete the training (roughly 6 h 
were required to train the generator network from the inverse design 
framework in 150,000 generator iterations on NVIDIA GeForce RTX 
2070 Super graphics card with 7.5 compute capability).

To explore solution diversity, we chose two target shapes that 
exhibit the 2-fold reflectional symmetry (the peanut shell and inverted 
ship hull) and two shapes that exhibit the 4-fold reflectional symmetry 
(the floppy hat and pyramid shapes). The generator network (from the 
inverse design framework) was able to generate different fabrication 
parameters that lead to almost the same target shapes. Three different 
solutions of the generated fabrication parameters are shown in Fig. 
7 for the following shapes: a floppy hat (a), a peanut shell (b), a 
pyramid (c) and an inverted ship hull (d). In addition to the generated 
kirigami patterns, we have also added plots of the simulated deformed 
shapes, which are presented as images of the projected 𝑧-displacements 
and directly correspond to the representations of the target shape in 
the second column (‘‘target shape (2D)’’) in Fig.  6. As above, we also 
calculated the SSIM and MSE scores between the simulated and target 
shapes.

By analyzing again the type of symmetry of the generated kirigami 
patterns, we came to similar conclusions as above. For the shapes that 
exhibit the 2-fold reflectional symmetry, i.e., the peanut (Fig.  7b) and 
the inverted ship hull (Fig.  7d), we can see that the generated kirigami 
patterns are of the true 2-fold reflectional symmetry type. Moreover, 
the kirigami pattern of solution 1 for the peanut shell (Fig.  7b) is very 
similar to the kirigami pattern obtained by Ma et al. (2024). With 
respect to the shapes that exhibit the 4-fold reflectional symmetry, 
i.e., the floppy hat (Fig.  7a) and the pyramid (Fig.  7c), we can find 
that most of the generated kirigami patterns are similar to the 4-fold 
reflectional symmetry type, with the solution 1 of the pyramid shape 
(Fig.  7c) being a perfect pattern of the 4-fold reflectional symmetry.

Finally, we analyzed the interpolation ability of the trained gener-
ator network from the inverse design framework. We wanted to check 
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whether the generator network generates new kirigami patterns that 
are not present in the training dataset and whether these lead to better 
results. For this reason, the nearest neighbors (present in the expanded 
training dataset) of the generated kirigami patterns, shown in Fig.  6, 
were found. We employed the nearest neighbors algorithm (Pedregosa 
et al., 2011) and plotted the kirigami patterns found by the algorithm 
(column ‘‘nearest neighbor ’’ in Fig.  8). For the FEM simulations, we 
assigned the same pre-stretch values as shown in Fig.  6 and plotted 
the results in column ‘‘simulated shape’’ of Fig.  8. The deformed shapes 
can be directly compared to the target and simulated shapes in Fig. 
6, as the colors refer to the same scale. We calculated the differences 
between the target shapes (from Fig.  6) and the simulated shapes of the 
neighboring kirigami patterns (column ‘‘difference’’ in Fig.  8). Similarly, 
we also calculated the SSIM and MSE scores between the target shapes 
and the simulated shapes. By comparing the fabrication parameters 
from Figs.  6–8, we can see that the generator network was able to find 
new kirigami patterns that are not present in the training dataset. We 
can also see that in most cases, the corresponding simulated shapes 
from the generated fabrication parameters match the target shapes 
better than those computed from the neighboring kirigami patterns. 
In contrast, we found that the generated and neighboring kirigami 
patterns for the pyramid shapes (case (f) in Figs.  6 and 8) are very 
similar and therefore lead to similar results. Moreover, the neighboring 
kirigami pattern is a better solution than the solutions for the pyramid 
shapes presented in Fig.  7c. Similar observations were made for the 
inverted ship hull, Fig.  7d.

6. Alternative approaches

The analysis presented above raises a question on the use of deep 
generative modeling for the inverse design. A partial answer has al-
ready been given by Ma et al. (2024), who compared their proposed 
AI-driven approach with that of a genetic algorithm, a standard evo-
lutionary method for optimization. They showed that the traditional 
evolutionary search fails in finding the fabrication parameters, is lim-
ited to the discrete design space, and is much slower compared to their 
proposed framework. In this section, we further address this question 
by evaluating our approach against two other alternative (competing) 
methods.

The first approach is quite similar to the one presented in the 
sections above, except that it does not rely on the pre-trained simulator 
network. Its task of conditioning the generator network is completely 
taken over by the critic network (Mirza and Osindero, 2014), which 
now evaluates the feasibility of the generated fabrication parameters 
and also tries to provide information about the accuracy. For simplicity 
and a more transparent comparison, we name this framework as the al-
ternative inverse design framework. We trained the generator network 
(and the critic network) from the alternative inverse design framework 
with the same training dataset, with the same hyperparameters and 
for the same number of iterations compared to the inverse design 
framework, except that the architecture of the critic network had to 
be slightly changed to also use the target shapes as inputs. This change 
did not increase the number of parameters enough to affect the capacity 
of the network (the information about the changes made can be found 
in Supplementary material).

The second approach does not come from the family of generative 
models. The model used is a classical FNN, similar to the inverted simu-
lator network used to condition the generator network from the inverse 
design framework. We swapped the inputs and outputs so that the 
inverse simulator network tries to predict the fabrication parameters 
based on the given target shape. We trained it with the same training 
dataset and with the same hyperparameters as the simulator network. 
Only the number of parameters was slightly changed to obtain correctly 
defined input and output dimensions (the information on the changes 
made can be found in Supplementary material).
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Fig. 7. Additional solutions for target shapes representing the floppy hat (a), the peanut shell (b), the pyramid c) and the inverted ship hull (d). The generator network is able to 
provide multiple independent fabrication parameters that result in shapes that are very similar to the target shapes. The colors represent the 𝑧-displacements relative to the plane 
𝑧 = 0. The units are in mm.
To visualize and compare the effectiveness of each inverse design 
approach, we selected three random training pairs from the test dataset, 
marked as (a), (b) and (c) in Fig.  9, where ground truths of the 
fabrication parameters and the corresponding target shapes are plotted 
in the top row (‘‘ground truth’’). First, we generated the solutions using 
the generator network from the inverse design framework. The gener-
ated fabrication parameters and the simulated corresponding deformed 
shapes of the composites are shown in the second row (‘‘inverse design 
framework’’) in Fig.  9. We included the SSIM and MSE scores between 
the simulated and target shapes and obtained a strong agreement.

Next, we generated the solutions with the generator network from 
the alternative inverse design framework. The generated fabrication 
parameters and the simulated corresponding deformed shapes for all 
three examples are shown in the third row (‘‘alternative inverse design 
framework’’) in Fig.  9. We observe that the agreement between the 
simulated and target shapes is equally good when compared to the 
inverse design framework approach, however, the generated kirigami 
patterns show a slightly lower quality. We also found that the generator 
network from the alternative inverse design framework was not able to 
generate drastically different fabrication parameters for the same target 
shape.

To analyze this weakness, we randomly selected 100 different target 
shapes from the test dataset. For each target shape, we generated 
10 solutions using the generator networks from the inverse design 
framework and the alternative inverse design framework. Thus, we 
obtained 100 groups with 10 solutions for equal input target shapes 
for each method. Similar to Section 3.2, we employed VGG-16 and 
t-SNE to extract the features of the generated kirigami patterns from 
both solution datasets (each with 1000 samples) and to reduce their 
dimensionality, see Fig.  10a. It can be observed that the distribution 
of solutions from the inverse design framework is more spread out 
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and not clustered as in the alternative inverse design framework. 
Furthermore, the individual data points from the alternative inverse 
design framework appear to overlap in many cases, suggesting kirigami 
pattern solutions with similar or the same characteristics for the same 
target shapes. We confirmed this by calculating the average pairwise 
Euclidean distances between the obtained feature vectors within each 
group. The distributions are shown in Fig.  10b. In the dataset of the 
alternative inverse design framework, the distances (within interval 
[0.2, 10.7], average 2.0 and standard deviation 2.3) are smaller than in 
the dataset of the inverse design framework (within interval [11.3, 54.3], 
average 24.7 and standard deviation 7.9), implying that the kirigami 
patterns are less diverse.

Contrary to this finding, the generator network from the inverse 
design framework was able to provide multiple independent solutions 
for the same input target shapes, as it is shown in Fig.  7. We drew 
the same conclusions by visually comparing the generated kirigami 
patterns within each group and between the two datasets analyzed 
above. The kirigami patterns in the dataset generated with the gener-
ator network from the inverse design framework (four examples from 
one group are shown in Fig.  10c) are visually more diverse compared 
to the kirigami patterns generated with the generator network from the 
alternative inverse design framework. They have a different number of 
voids and a different orientation of the cutouts. No such differences are 
found when visually inspecting the kirigami patterns within the groups 
of the dataset created with the generator network from the alternative 
inverse design framework. The patterns are very similar, have only 
minor differences in the kirigami cutout layouts, and often have the 
same overlapping patterns within each group, such as exhibited by the 
four patterns from one group in Fig.  10d. These observations were made 
in all 100 groups and confirm the distributions shown in Fig.  10b.
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Fig. 8. Nearest neighbors of the kirigami patterns generated for the user-defined shapes 
shown in Fig.  6, and the corresponding simulated shapes and differences compared to 
the target shapes. The colors represent the 𝑧-displacements relative to the plane 𝑧 = 0. 
The units are in mm.

We believe that the reason for this lies in the critic network of 
the alternative inverse design framework, which has also taken over 
the tasks of the pre-trained simulator network (that is not present 
in this framework). Since the inverse problem we are dealing with 
has a high degree of solution diversity, the critic network was not 
able to additionally condition the generator network to link several 
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different fabrication parameters with the same or similar target shapes. 
Therefore, the generator network from the alternative inverse design 
framework was not able to generate different kirigami patterns for the 
same input target shapes.

Finally, we also predicted the solutions using the inverse simulator 
network. The predicted fabrication parameters and the simulated cor-
responding deformed shapes for all three examples are shown in the 
bottom row (‘‘inverse simulator network’’) in Fig.  9. The inverse simulator 
network clearly had problems with the one-to-many mapping problem, 
since the predicted kirigami patterns are of poor quality compared 
to the other inverse problem approaches. Consequently, the simulated 
shapes also do not match well with the target shapes. This confirms 
our assumptions that classical FNNs are not suitable for solving inverse 
problems where many solutions exist that fulfill the same or similar 
conditions.

In Fig.  9 we have intentionally shown the unprocessed kirigami pat-
terns for all three inverse design approaches to emphasize the quality 
of the generated kirigami patterns, but the simulations were performed 
with the post-processed patterns. Unprocessed kirigami patterns are 
also shown in Fig.  10c and d.

7. Conclusions

In this study, a data-driven framework for the inverse design of 
self-deployable soft kirigami composites was introduced. The inverse 
problem was defined where the target 3D shapes are known but the 
fabrication parameters for the realization of such structures are not. The 
composites are made of two thin elastic layers that are bonded during 
the fabrication stage. The active layer is homogeneously pre-stretched 
and therefore carries the elastic potential energy, while the passive 
layer holds a specific kirigami cut pattern. Upon release, the structure 
self-deploys into a target shape. Together, the pre-stretch and kirigami 
form the fabrication parameters that are inversely generated by the 
generative model trained within the GAN architecture. The training of 
the generator network (from the inverse design framework) is condi-
tioned simultaneously by the pre-trained simulator network and the 
critic network. Moreover, the simulator network was also used to create 
and utilize a hybrid training dataset constructed through a combination 
of FEM and AI techniques. This allowed us not only to process the 
data faster, but also to have a greater variety of training samples. Such 
approach is not mandatory for the creation of the training dataset, as 
it could be created entirely with FEM. However, it can be considered 
as a useful concept for other problems where the creation of training 
samples using conventional methods requires much more time and 
resources.

Our numerical and experimental results confirm the effectiveness 
of our method and show that the generator network from the inverse 
design framework can accurately determine the required kirigami pat-
terns and pre-stretch values to transform simple 2D structures into 
intricate 3D shapes. We have shown that the generator network from 
the inverse design framework is able to find kirigami patterns that 
correspond to the target shapes in terms of the 2-fold or 4-fold re-
flectional symmetry type, and that it is also able to generate kirigami 
patterns that do not have this type of connection with the target shapes. 
Furthermore, the inverse design solutions for a given target shape were 
not limited to a single combination of fabrication parameters. The 
generator network from the inverse design framework was shown to 
be capable of successfully generating multiple independent kirigami 
patterns and pre-stretches for the same target shape, not present in the 
training dataset. However, this is not the case when using the generator 
network from the alternative inverse design framework, which is only 
conditioned by the critic network, simultaneously providing informa-
tion about the feasibility and shape. Our results indicate that it is better 
to split the task of the necessary feedback for the conditioning of the 
generator network. This was done in the inverse design framework, 
where the feedback information was divided into two distinct groups 
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Fig. 9. Comparison of the inverse design of self-deployable kirigami composites with different approaches for three randomly selected samples from the test dataset. The first 
row shows the ground truths — fabrication parameters from the test dataset and the corresponding shapes, the second row shows the generated fabrication parameters using the 
generator network from the inverse design framework and FEM results, the third row shows the generated fabrication parameters using the generator network from the alternative 
inverse design framework and FEM results, the last row shows the predicted fabrication parameters using the inverse simulator network and the corresponding FEM results. The 
colors represent the 𝑧-displacements relative to the plane 𝑧 = 0. The units are in mm.
— the feasibility information (provided by the critic network) and the 
accuracy information (provided by the pre-trained simulator network). 
Additionally, it has been shown that the use of a classical FNN is 
inappropriate in this one-to-many mapping inverse problem.

The method presented addresses the challenges associated with cre-
ating complex, self-deployable 3D structures from simple 2D designs. 
By utilizing the principles of kirigami and strain mismatch combined 
with the advanced capabilities of GANs, we have demonstrated a 
significant accuracy, efficiency and diversity of generated fabrication 
parameters for forming composite structures that deploy into the tar-
get shapes. However, limitations exist and they need to be carefully 
considered when using this approach. The first one is related to the 
height of the user-defined target shape, or in the other words to the 
degree of deformation. By selecting different geometric and material 
properties and by changing the range of the pre-stretch values while 
preparing the training dataset, one is able to tailor the range of the 
structure sizes. The second limitation is related to the inability of 
producing composites with local non-smooth surface curvature in their 
deformed state, e.g., floppy hat, flower, pyramid and inverted ship 
hull shapes. This is due to the morphing mechanism where the shapes 
cannot demonstrate pronounced local changes in the curvature. How-
ever, as it can be seen from Fig.  6, we were able to approximate 
such surfaces quite accurately. Additionally, the integration of a pre-
trained simulator network into the GAN framework has proven to be a 
crucial enhancement, effectively overcoming the limitations of classical 
FNNs and providing more reliable solutions. These results underline the 
potential of our approach to revolutionize the design and fabrication of 
deployable structures in various applications and systems.
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Fig. 10. Analyzing the inability of the generator network (from the alternative inverse 
design framework) to generate different kirigami patterns for the same input target 
shapes. (a) Distribution comparison of the generated kirigami patterns for equal 
target shapes with the generator networks from the inverse design framework and 
the alternative inverse design framework. (b) Comparison of the average pairwise 
Euclidean distances between the kirigami patterns within each group. (c) Kirigami 
patterns generated with the generator network from the inverse design framework for 
the same target shape. (d) Kirigami patterns generated by the generator network from 
the alternative inverse design framework for the same target shape.
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