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We present a nonlinear discrete Kirchhoff-Love four-node shell finite element that is based on the cubic
Hermite edge curves and the bilinear Coons surface patch spanning the surface between them. The cubic
Hermite edge curves are constructed by minimizing the bending curvature of a spatial curve connecting two
adjacent nodes of the element. The G'-continuity is obtained at each node of the finite element mesh. Namely,
the tangent vectors of the set of the edge curves attached to a given node of the mesh share the same
tangent plane to the shell mid-surface for any configuration. To avoid the membrane locking, common in
shell elements with higher-order interpolations, the assumed natural strains are adopted, solving the plate
compatibility equation. The derived element has 5 degrees of freedom per node, 3 mid-surface displacements
and 2 rotations of the mid-surface normal vector, which also rotate the corresponding mid-surface tangent
plane. Several numerical examples illustrate its performance in linear and nonlinear tests, for both regular and

distorted meshes.

1. Introduction

Curvature-induced high ratio between the load-bearing capacity
and weight, as well as the aesthetic features, make shell structures
invaluable in many engineering and technological applications, ranging
from cooling towers, roofs, containers, ship hulls, aircraft fuselages,
car bodies, to thin-walled smart memory alloys and nano-shells. The
shell can be geometrically represented as an intrinsic 2D curved surface
with prescribed thickness. Taking this into account, the mathematical
description of shell deformation and motion under external loadings
becomes much more complex than the corresponding description for
the 3D solid. There are various shell theories in use that are based
on different assumptions and therefore applicable for different types of
shells (e.g. thick, thin, shallow, axisymmetric, etc.) and different types
of shell behaviour (e.g. linear, geometrically non-linear, inelastic, etc.).
Commonly used shell theories that differ in terms of the basic kinematic
assumption are the theory with the Reissner-Mindlin kinematics (which
accounts for transverse shear deformation energy), the Kirchhoff-Love
theory (for thin shells), the Donnell-Mustari-Vlasov theory (for thin
and shallow shells), the solid-shell theory (useful for shells with com-
plex (inelastic) material behaviour), and the multi-layered shell theory.

As for the finite element approximations, the shell theory with
the Reissner-Mindlin kinematics requires only C°-continuity for the
functions that approximate the initial and deformed shell geometries,
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e.g. [1-5]. In contrast, the Kirchhoff-Love shell theory requires C'-
continuity of the corresponding functions, which is incredibly hard to
achieve, and requires, among other complexities, a large number of
element’s degrees of freedom, e.g. [6,7].

In the computer graphics and geometric modelling, the surface
patches are used for the representation of curved surfaces, e.g. [8].
In general, it is possible to achieve different levels of continuity/
smoothness between surface patches, with the C!-continuity being
much more difficult to achieve than the G!-continuity. Indeed, the
C!-continuity between two adjacent surface patches requires a unique
tangent plane to the surface at any point of the common boundary,
and that the patches have identical parametric tangent vectors that
are members of the tangent plane. The G!-continuity is less strict and
does not require the same length of the tangent vectors. By definition,
the two patches with a common boundary are G!-continuous if they
have a continuously varying tangent plane along that boundary. There
are several surface patches available, e.g. [8]. The most basic is the
bi-linearly blended Coons patch, followed by the partially bi-cubically
blended Coons and bi-cubically blended Coons patches. The shapes of
these patches are controlled by the nodal points, boundary curves and
corner twist. Another type of the surface patches are the Bezier patches,
the shapes of which are defined by control points: the degree of the
Bezier patch corresponds to the number of control points. Similar to the
Bezier surface patches are the B-splines, the shapes of which are also
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controlled by control points and can be written in a piecewise Bezier
form. Extensions of the B-splines are NURBS (non-uniform rational
basis splines) and T-splines (e.g. [9]1), which also fall into the category
of NURBS.

Some of the above mentioned surface patches were used for the
derivation of plate and shell finite elements. For example, in [10], the
Coons-Gregory surface patch, which is an extension of the bi-cubic
Coons patch, was used for interpolating the transverse displacement
of a linear quadrilateral Kirchhoff plate finite element. In [11], the
deformed geometry of a linear quadrilateral plate finite element was
interpolated with the Gregory patch, which is an extension of the ra-
tional bi-cubic Bezier surface patch. The Kirchhoff plate finite elements
based on the Gregory surface patch guarantee the G'-continuity of the
transverse displacement between the elements, but not the continuity
of its second derivatives, which causes the related plate elements to
fail the (bending) patch test if constraints are not enforced, see [11].
The ideas from [10] and [11] were applied to linear shells in [7]. As
for the shell finite elements, many recently proposed formulations are
based on the approach of isogeometric analysis (IGA) introduced by
Hughes [12], see e.g. Kiendl et al. [13]. The main idea behind the IGA
formulations is to use the computer aided design functions to define the
finite element approximations. The isogeometric shell finite elements
use B-splines and NURBS to interpolate any shell configuration with
high degree of continuity. The problem of G'-continuity between ad-
jacent patches appears also in isogeometric shell formulations. To this
end, Kiendl et al. [14] introduced a penalty formulation based on the
bending strip method, which was later accompanied by several other
strategies to enforce the G'-continuity between the patches.

The discrete Kirchhoff plate and the discrete Kirchhoff-Love shell
finite elements satisfy the continuity requirements only at the discrete
boundary points and not along the entire boundary of the element.
In the majority of formulations, the continuity requirements are im-
posed implicitly by enforcing the Kirchhoff kinematic constraint at
the discrete boundary points. For example, the linear discrete Kirch-
hoff quadrilateral plate elements from [15-17] enforce the Kirchhoff
kinematic constraint at the nodes (and partly along each edge in
the direction of the edge). For a review of linear discrete Kirchhoff
plate and discrete Kirchhoff-Love shell finite elements, we refer the
reader to [18]. As for the geometrically non-linear (large rotation)
discrete Kirchhoff-Love shell finite elements, most formulations are for
triangles, and only a few for quadrilaterals, see [19-21]. In [20], the
integral form for zero transverse shear strains along the element edges
(in the direction of the edge) is enforced, and in [21], the Kirchhoff-
Love constraints are imposed at mid-sides of the edges of the element
with a non-standard numerical quadrature.

This work presents a novel discrete Kirchhoff-Love non-linear (large
rotation) quadrilateral finite element. The formulation is based on the
bilinear Coons patch spanned between the cubic Hermite edge curves.
The tangent vectors at both ends of the Hermite edge curve lie on
the tangent planes to the mid-surface of the shell, which provides the
G!-continuity in the nodes. The derived element has only 5 degrees
of freedom per node, i.e. 3 displacements and 2 rotations, which is
much less than full Kirchhoff-Love shell formulations, e.g. [6,7]. The
rotational degrees of freedom rotate the nodal mid-surface normal
vector along with the corresponding tangent plane to the mid-surface
of the shell. This, together with the displacement degrees of freedom,
affects the shapes of the Hermite edge curves and the Coons surface
patch, but keeps the G'-continuity in the nodes for any shell con-
figuration. In this way, we manage to keep the same number of the
degrees of freedom as required for the corresponding quadrilaterals
with the Reissner-Mindlin kinematics, which have much lower con-
tinuity requirement between elements. Moreover, the same data as
for the Reissner-Mindlin elements is needed to construct the mesh
for the derived discrete Kirchhoff-Love element: nodal coordinates
and mid-surface normals. The proposed element can also be modified
for analysis of non-smooth shells with kinks. The technique, which is
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frequently used for 5 dofs/node Reissner-Mindlin shell finite elements
(with 2 local rotational dofs/node), e.g. [22], fits the proposed element
as well.

The derived finite element has higher-order interpolation functions,
which are capable to describe curved shell geometries more accu-
rately. A disadvantage of such higher-order interpolation is strong
membrane locking. The bending deformations are accompanied by
parasitic membrane strains that artificially stiffen the element. In order
to eliminate the membrane locking, we use the assumed natural strain
(ANS) method as proposed in [3].

Section 2 of the paper introduces the basics of the Kirchhoff-Love
theory, followed by the definition of the edge curves of the finite
element in Section 3, and the definition of the finite element surface
via the Coons patch in Section 4. Section 5 describes the applied ANS
method for membrane locking, a set of numerical examples is presented
in Section 6, and conclusions are drawn in Section 7. Some additional
derivations, longer expressions and interpolation functions are given in

Appendix.

2. Shell theory

The Kirchhoff-Love shell theory assumes that the normal vector
to the initial middle surface of the shell remains normal also in the
deformed configuration. This assumption implies the neglect of the
transverse shear deformation energy and allows to describe the geome-
try of the initial and the deformed configuration of the shell in exactly
the same manner.

In order to distinguish between the initial and the deformed config-
uration, we denote the objects of the former by upper case letters and
the objects of the latter by lower case letters. For the indices, we adopt
the standard notation (with some exceptions) using small Greek letters
for indices 1,2 and small Latin letters for indices 1,2, 3.

2.1. Kinematics

Let the undeformed (initial) shell configuration S be described in
R3 as:

X&) =X, )+ 45,8, €h)

where (¢!,£%) € A ¢ R? and & € [-h/2,h/2] C R represent a triplet
of curvilinear coordinates. Hereinafter, for the sake of brevity, we will
omit writing the arguments of the function. Thus, X describes the mid-
surface M, A; is the unit vector field that is normal to M, A is a
parametrization domain of M, and # is the initial thickness of the shell
(constant in our case). The tangent plane on M, denoted by 7,,, is
defined by the vectors

X
A, =X, = oea a € {1,2}, 2)
which, together with
A XA
Ay = 1272 3)
A} x A, ||

form a local covariant basis. Because A is perpendicular to M and
because of unit length, the following holds:

A,-A;=0, A;,-A;=0, A;-A;=1 and A3=A4, )]

The contravariant basis vectors A’ are defined by the orthogonality

condition A’ - A; = &/, where 6; is the Kronecker delta symbol. In a

point on S, a local covariant basis is constructed as:
G,=A,+E4;, and G;=A,. (5)
The covariant elements G;; := G, - G; of the metric tensor G are

Gop = Ay =283 By + (£)7Cyp.

Ga3 = O, G33 = 1, (6)
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where A,;, B,; ad C,; represent the covariant elements of the first,
second and third fundamental forms of the mid-surface M, respectively.
They are defined as:

Agp 1= Ay Ay, Buyi=Ay-Apy.  Cupi=Asy-Asy. @

The initial and the deformed mid-surface are connected by the displace-
ment field U

x=X+U. €))

Because of the Kirchhoff-Love kinematic assumption, the structure of
the above kinematic expressions, given for the initial configuration,
remains the same also for the deformed configuration.

For the strain measure, we will use the Green-Lagrange strain
tensor

= Lo
E:=5(@-0). )

where g denotes the metric tensor of the deformed shell configuration
s. Because of the same structure of the kinematic expressions in the
initial and deformed configuration, as mentioned above, we can write
the components of the Green-Lagrange strain tensor in terms of to the
contravariant basis A%, A as

Epp=€up+ &Ky + () pyp, and Ej =0, (10)
where

1

1
€up = 5 (up = Aup) - Pap =5 (¢ap = Cup)

(€8]

Kap = _(baﬂ - Baﬁ)7

and a,;, b,; and c,; are the fundamental forms of the deformed mid-
surface m. Following the usual approach, such as e.g. in [23], we will
neglect the effect of p,;.

To conclude this section, let us recall some useful identities from
the differential geometry, see e.g. [24], that apply for the adopted shell
theory (summation over repeated indices applies):

Asa=—BiA,. BiA, =By BBy =Cyp a2)
A x Ay =VAA,, Ay xA;=VAA', A x A, =\AA (13)
A=A X A|? = Aj Ay — (A, A"=ATA, AYA,= 5. (14)
Tl = AT Ay = Ay AT, (15)

2.2. Constitutive relations

We will use the thin-shell version of the isotropic St. Venant—
Kirchhoff hyperelastic strain energy function, which is appropriate
for large displacements and rotations, but only for moderately large
strains. It takes into account the plane stress assumptions, and it is
defined as a sum of two parts, W = (W + W, where (W is the
membrane deformation energy density and | W is the bending deforma-
tion energy density. For the chosen strain energy function, the second
Piola—Kirchhoff membrane forces and bending moments are its energy
conjugates. They are given as:

oW Eh

erﬁ 07" _ _erﬁyé .,

Oegg  1—12 €ys

oW ER 16
M = 1 - HOPS 5

Okeg  12(1-12) !

where E is Young’s modulus, v is Poisson’s ratio and H*’% are the
components of the isotropic constitutive tensor

HOPre = yA"P 478 4 %(1 —V)(ATT APP 4 A% APT), a7

By using Voigt’s notation for the strains and stress resultants,

€= [611»622’2€12]T’ K= [K113K22»2’<12]T~ (18)

Thin-Walled Structures 168 (2021) 108268
N = [NII’NZZ’NH]T’ M= [Mll,M22,M'2]T, 19)
we obtain the following relations from Egs. (16) and (17):
Eh En?

N = He, =——" Hx, (20)
1-v2 12(1 = v2)
where the constitutive matrix H is (see e.g. [23]):
Al]All VA11A22+(1_V)A]2A12 AllAIZ
H = VA11A22+(1_V)A12A12 A22A22 A22A]2 .
Allg12 A2 2 I_—VA“A22+'+—”A‘2A‘2
2 2
@1n
2.3. Equilibrium equations
The total potential energy functional of the shell is
nw)= / (oW (eap(U)) + | W (i, 5 (U)))d A
M
—/ U~pdA+/ lKS (U3)? dA, (22)
M M2

where (W and ;W are the membrane and the bending strain energy
functions, respectively, p is the surface loading, and U; = U - A; is
normal displacement. With K; we denote the stiffness of the elastic
foundation, as in [25] and [26]. Of course, the boundary loading may
also exist, and in this case the boundary integral has to be added to
(22).

The mechanical system is in equilibrium, when the potential energy
functional is at its minimum. The necessary condition is

o= L =0, (23)
de

[[T(U + £5U))
e=0

where 5 IT denotes the variation of the potential energy, and ¢ is a scalar
parameter. By inserting Eq. (22) into Eq. (23) we get

§H(U,5U)=/ (8€ap N + 51,y M) d A
M

—/ 5U~pdA+/ 8U;K,Usd A = 0, 24
M M

where 6U and 6Uj; are kinematically admissible variations of displace-
ment field from (8) and normal displacement field, and 8eqps OKqp ATE
variations of membrane and bending strains, respectively.

3. Edge curves for quadrilateral finite element

Let us construct the boundary of a discrete-Kirchhoff-Love shell
finite element, which has four nodes and four edge curves spanning
between the nodes. The spatial locations of the nodes and the unit
normal vectors to the shell mid-surface at the nodes are given. This
implies that the tangent planes to the shell mid-surface at the nodes are
known as well. The construction of the edge curves will be presented
only for the initial configuration, because exactly the same procedure
is also valid for the deformed configuration. Let us note that the capital
Latin letter index from the index set {1,2,3,4} (usually on the left hand
side of a particular symbol) stands for the finite element node.

3.1. Edge curves

Following Refs. [27] and [28], we choose the functional, which can
be associated with the bending of a spatial curve R(z),

I(R) = / l R"@)- R"(t)dt. (25)
To

Here, ¢ is a curvilinear coordinate that has values 7, and ¢, at the
start and end nodes, respectively. We search for the optimal equation
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Fig. 1. Edge curve with the tangent vector, tangent plane, and orthonormal basis at its start and end point.

of function R(f) by using the calculus of variations as described in
Appendix, see Egs. (99)—(115). The solution

Rt =1£C,+12C5+1C, + C|, (26)

where C; are constant vectors, gives the edge curve with the least bend-
ing. Two boundary conditions for defining C; are the spatial locations
of the start and end node. The remaining two boundary conditions are
the tangent vectors to the curve at the start and end node, which are
required to be on the corresponding mid-surface tangent planes.

For the edge curve spanning between nodes I and J of the finite
element, the boundary conditions are:

R(t)=X,, Rt)=X,;, R'(ty)=,T,, R'(t)=,T,, 27)

where X; and ;T are the position vector and the tangent vector for
node I, respectively, and k € {1,2} reflects that there are two edge
curves at node I, each of them having its own tangent vector. By
inserting (27) into (26), we get:
(t—1)%Q2t =3ty + 1))
(—tg+1)3
(=190 =1, (=1t =1y
(to =11 (to —1,)?

If Eq. (28) is to cover all four edges of the finite element, the indices
in Eq. (28) should be used in the following order (see Fig. 5)

t—10)2(2t + 1y — 3t
(t —19)*( 0 1)+

R(t) =X, o1}

Itk J (28)

I={1,241}, J=({233,4}, k={1,2,1,2}. (29)

Moreover, the curvilinear coordinate ¢ should be associated with the
isoparametric coordinates of the finite element, &' € [-1,1] and &% €
[-1, 1], which approximate the curvilinear coordinates over the shell
mid-surface from Section 2. In Eq. (28), the following order should be
used

t={& &8 (30)

to be in accordance with Eq. (29).

For a particular edge curve between nodes I = 1 and J = 2, we have

r=¢& REH = XEL -, k=1, 31

and the boundary conditions (27) are specified as

ty=-1, =1,

X=X, X;=X,, [Ty=14A, ;T=14 (32)

which reminds us that the nodal tangent vector equals the nodal covari-
ant basis vector. The following notation is used: ; A, is the covariant
basis vector A,, see Eq. (2), at the finite element node I. Consequently,
the relations for the edge curve between nodes I =4 and J = 3 are

Ty =44, ;T =34, (33)

and for the curves betweennodes I =2 and J =3,and I = 1 and J =4,

T =24y ;Ty=34; and T, =4, ;T;=44, 34

respectively.

3.2. Nodal tangent vectors of the edge curves

Let us create an orthonormal vector basis at each node of the
finite element. The third vector of such a basis at node I is given
by a unit normal vector ;A;. The other two vectors, ;E, and ;E,,
are perpendicular to it and to each other, but otherwise arbitrary, see
Fig. 1. With the nodal orthonormal bases at hand, the tangent vectors
for the edge curve between nodes I and J can be expressed by the
following linear combinations:

k k
1Te=ray (Ei+ oy [Ey, (35)

k k
iTi=ray JE\+ oy jE;. (36)
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kK kK k
In order to define ;ay, ;a,, ;a; and ;a,, we insert Egs. (35) and
(36) into (28). Moreover, we plug the resulting expression into (25)
to get the bending deformation energy of the edge curve, Eq. (25), as
a function of four unknowns:

Kok ko k 4
IGay, jog, yoy, yay) = ———
(o —11)

y ko ko k
X\ (g —1)” Ga)™+ o —1t) yoy yoy (Ey-;E; +

Kk k
(fo—’1)<(to—’1) a1 g0 (Ey-yEy =3 jay (Ep - X+

k ko, Ko, Kk
3gap jE - Xp+tp(Ga) =t Ga) +ity gayp jay sE; - Ey -
Kok k

ty gy jay JEy-[Ey =3 yoy jE - X
k ko,
+3 yoy JE; - X415 (Gan) —
ko, k& Kk
1 o))"+ 1y 1@ gay jEy- jEy =ty jay yap [Ey- By
k
-3 o Ey- X+
k ko, ko, k
3gam By Xy+it (o) -1 Gao)” =3 yap Ey- X

k
+3 50 sy X )+
3(x,.x,—2x,.x,+xj-xj)>. 37

We search for a-s that minimize (37) and provide edge curve with the
least bending. For this purpose, the following four equations are formed

koK kK

o (ay, oy, yay, jop)
. =
011){“,

0, x€{l.J}, we{l,2} (38)
The solution of this linear system is given in (116)—(119) in Appendix.
With known a-s, the nodal tangent vectors to the edge curves can be
written node-by-node as:

2 2

1 1

141 =101 1Ej+ 00 By, Ay =10 (Ej+ 0y By, (39)
1 1 2 2

2A1 S0 2 E1+ o0y 2By Ay S0 2 Ejtoa hEs, (40)
1 1 2 2

3A) =301 3E1+ 30y 3By 3A; =300 3E 1+ 30, 3E, (41
1 1 2 2

4A) =400 B+ 4By 4 Ay =40y 4E i+ 40 4By, (42)

and applied as boundary conditions, see (32)-(34), to obtain the edge
curves with G' continuity at nodes.

3.3. Continuity between the elements

For a set of elements, attached to a given node of the mesh, the
edge curves that meet at that node have their tangent vectors on
the unique tangent plane to the shell mid-surface. That makes the
approximated shell mid-surface G!-continuous across the nodes of the
mesh. However, the continuity along the edge of the element, in the
direction perpendicular to the edge is only C?, as two elements with the
same edge do not necessarily share the same tangent plane at all points
of this edge. Fig. 2 shows a schematic presentation of the continuity
between a patch of finite elements.

To conclude Section 3, we note once again that exactly the same
procedure must be repeated to construct the edge curves in the de-
formed configuration by using the orthonormal coordinate system,
denoted as {;e,e,, a3} for node I, see Fig. 3, that is completely
defined by nodal rotations as shown in Section 4.3.
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4. Coons patch between the edge curves

In this section, we span the bilinear Coons patch between the
above defined Hermite edge curves. To this end, we use the following
notation: X (&', -1), X(£', 1), X(—1,&?) and X(1,&?) for the edge curves
from the initial configuration, which are defined between nodes 1 and
2,4 and 3, 1 and 4, and 2 and 3, respectively, by Eq. (28).

4.1. Bilinear Coons patch
Three surfaces are combined in order to form the Coons patch

between the edge curves. The first surface spans between X (¢!, —1) and
X'\ as

52_62 52_52
X (.8 = (1- —)XE" .-+ (5—3)XE" D, (43)
17 %0 17 %0

the second surface is defined between X(—1,&2) and X(1,£&2) as
1 _ gl 1 _ gl

g -¢ g -¢
X, &) = (1- —) X1+ (51 )X, 44)
- &=

0

whereas the third surface is interpolated only between the nodes, X; =
X(-1,-1), X, = X(1,-1), X; = X(1,1) and X, = X(-1,1), as

N P d-g ] [X(-1L.-1) X(-1,1)
X, &= (1 5,‘—:2) (:{—gz)HX(l,—l) X(l,l)]

52_52

(1 - a_ g)
:2—25 K
(:f—.fg )-

(45)

The following combination, see Fig. 4, defines the bilinear Coons patch
between the four Hermite edge curves:

X(EE) = X () + X&) — X 4", 8. (46)
The constants in Egs. (43)—(45) are
g=-1, &=1 &=-1, =1 47

4.2. Finite element interpolations

Eq. (46) can be rewritten in a more standard way, by presenting the
initial surface of the finite element in terms of nodal values
4
X, = Y. GN, X+ Ny 1A + N3 Ay, (48)
=
where X; is the location of the node, and ;A, and ;A, are nodal
covariant tangent basis vectors, defined in Section 3.2. The deformed
surface of the finite element is interpolated in the same way as

4
x(&', &) = Z(INI X+ 1Ny ja; + N3 ay), (49)
=1
where x; is the location of the node, and ;a; and ;a, are nodal
covariant basis vectors, all in deformed configuration. The difference
between Egs. (49) and (48) yields displacements of the surface of the
element as:
4
UuE',eH= 2(1 Ny ju+ Ny (jay — (A + N3 (jay — 1 Ay)), (50)
1=1
where ;u is nodal displacement.

Here, ;N,, ;N, and ;N; are interpolation functions of the third
order, see Appendix, Egs. (121)-(123), that yield from using the
Hermite edge curves and the bilinear Coons patch. These interpolation
functions characterize the derived finite element, because (48) and (49)
are applied to compute the (real and virtual) curvatures and membrane
strains, and consequently moments and membrane forces, in a way
presented in Section 2.
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Fig. 2. Illustration of continuity between the set of elements attached to a given node.

3ds3

Fig. 3. Initial (left) and deformed (right) configuration of the finite element, with nodal orthonormal bases and nodal covariant base vectors.

Fig. 4. Schematic representation of X, X, and X, surfaces assembled into the bilinear Coons patch X.

4.3. Nodal values in current configuration

Eq. (49) shows that the deformed surface of the finite element is
completely defined by the position of the nodes and by the nodal
covariant basis vectors. The position of the node is given simply as

X=X+ u (51

Computing the nodal covariant basis vectors at the deformed con-
figuration is more demanding. One must first determine the nodal
orthonormal basis vectors ;e,, ;a; by rotating the corresponding or-
thonormal basis ;E,, ;A; from the initial configuration, e.g. [29]. In

this respect, we can represent the initial nodal normal vector as
143 =1 AoE;, (52)

where E; = [0,0, 117 is the third basis vector of the fixed orthonormal
basis in the 3D space, into which the discretized shell mid-surface is
embedded, see Figs. 1 and 3. Here, ;A, is the initial nodal rotation
matrix, given simply as

IAO = [1E1’1E2’1A3]- (53)
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With ;A at hand, the nodal normal vector in the deformed configura-
tion can be obtained by a composition of two rotations as

143 = 1A [AGDE;, (54)

where ;9 collects the material parameters that parametrize the second
rotation. In this work, we apply the (pseudo) rotation vector for ; 9,
making use of the Rodrigues formula to represent the second rotation,
e.g. [2,29-31]

- sin(;9) ~ 1 —cos(;9

JAGY) = cosGOT + U ),3+ g’ ),s®,s. (55)
I (9

Here, ;8 is a skew-symmetric matrix, thus ;8b = ;8 x b for any

b € R’ and ;9 = ||;9|. With the above definition for ;A(;9), the
drilling rotation is excluded, making ;& a vector with only two non
zero components. Taking this into account, a simplification of Eq. (54)
is obtained:

5111(,19)

Jas = Ay JAGOE; = A, [cos(,a)E3 L gy E3] (56)

In the same way, the remaining two vectors of the nodal orthonormal
basis in the deformed configuration are obtained as

- sin(;9)
Je1 = Ay JAGOE, = A, [cos(,&)E1 + 1= 9XE,
1
1 —cos(;9)
(ITIS(“?‘EI) ] 57N
N sin(;9)
ey = 1Ay JAGE, = 1A, [cos(,&)E2 + JIXE,
1 —cos(;9)
——— 9,9 E) |, 58
Gop 1Y Ea) ] 9

where E; =[1,0,0]” and E, =[0,1,0]".
With the nodal orthonormal basis ;e,, ;a; at hand, the correspond-
ing version of Egs. (39)-(42) is employed

1 1 2 2

141 =10 1€t 14y 1€, a; =1a; et €, (59
1 1 2 2

20) =20; g€t 2@y 1€, 28) S s€1t 20y o€, (60)
1 1 2 2

3@ =301 3€;t 3 38, 3a; =30; 3€;+ 3 3€, (61)
1 1 2 2

4 =401 g€t 40) 4@,  4Q; =40 g€t 40 4€), (62)

to get the nodal covariant basis vectors in the deformed configu-
ration. To get 16 scalar parameters from Egs. (59)-(62), the corre-
sponding versions of Egs. (116)-(119) in Appendix are applied with
X;.Xy, 1€, 1€y, ye; and je, replacing X;, X ;, /E|, E,, ;E| and ; E,.

We note that by applying the finite rotation description (56)—(58)
in (23), an additive update of the (pseudo) rotation vector at the node
of the element is performed. The theoretical background for this kind
of rotational update is explained in e.g. [30,31], and the practical
implementation with illustrative numerical examples is presented in
e.g. [2,29].

5. Assumed natural strains and variational formulation
5.1. ANS concept for membrane strains

The following ANS interpolation was suggested in [32] for curing
the membrane locking for the four-node shell element
1 1
en = 5 (1= e () + 5(1+ ey (C), (63)

en = 501 = Een(D)+ 11 +Een(B),
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Fig. 5. Tieing points for ANS membrane strain interpolation scheme. Gauss points for
5-point quadrature rule with W, = W, = W; = W, =5/9 and W; = 16/9 weights.

€1p = €pp(E),

where, ¢,(A), €,,(C), e5,(D), €5,(B) and ¢€,,(E) are the strains evaluated
at the points shown in Fig. 5. However, with the ANS from Eq. (63), the
shell element does not pass the membrane patch test. This deficiency
can be removed, see [3], by using a higher-order assumed strain
interpolation

e =€) + &7V + (&) .1, (64)
e =€) +&e)) + (' er),
e =€y +&lefy + &% + £,

and calibrating the coefficients so that Eqgs. (64) satisfy the compatibil-
ity equation for the plane membrane problem

2 2 2
06“_0612 07 €en 1 0€

+ =
0E2082 T oE10E2 01 9E! 12 052
Here, I’ 112 and I 122 are Christoffel’s symbols, defined in Eq. (15).

Our implementation of ANS follows [3], except for the choice of
the plane to deal with the plane membrane problem. We use the plane
defined by the following two vectors

dey

+2r1?2

12 9&! —21"“ F12 ap- (65)

d +d d —-d
t = it B Iy = it (66)
lld; + d,l| lld; —d,l|
where
X;—-X X, - X
d =—2> =1 dy=—2 =% 67)
X5 — X4l X5 — X4l

The properties of the projection of the shell mid-surface on that plane
are illustrated in [5]. The determinant of the transformation (i.e. the
Jacobian) matrix between the coordinates in the plane defined by ¢,
and the curvilinear coordinates &% can be given simply as

A =cy+ ¢ &%, (68)

where ¢, and ¢, are constants. Because the covariant base vectors in
the plane are

A =AV+ A, A=A+ EA, (69)
4 4 4

AV =Y a X, A=Y ay X, A=) h X, (70)
I=1 I=1 I=1
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1 1
where a;; = 6 @ = 3 h; =
n; € {-1,-1,1,1}, one has

o= (AY-1))(AY - 1,) — (AT - 1,)(AY - 1),

1&m & € {-1,1,1,-1) and

e =AY 1)(A-1y) - (A-1))(A) - 1), 71)
e =(A-1))(AY - 1y) — (AS - 1))(A - 1),

and

=1 =1 72
2= ;% 2= 7 72)

After substituting ANS interpolations (64) into the compatibility
equation (65), the following relations are obtained

o1 _ 20 _ 11 _ 10 _ 01 01 _ _10

€11 =€ T €2 T 6o 2e), = €y 261, = €y, 73
€01 € 00y, S0 S ooy 2619 oo

€y = _(611 __611) _(622__622)_ 5 €1 74
€ € 0 [

0
indicating that there are only five independent coefficients in Eq. (64).
If we now use 4 tieing points A, B, C and D, see Fig. 5, for the in-plane
normal strains and one tieing point E for the in-plain shear strain, and
insert Egs. (73)-(74) into Eq. (64), we get the following expressions for
the ANS strains:
1 1 -
e = 5(1 - ey (A) + 5(1 +&e 1 (0) = (1= EH?)e,, (75)
1 1 N
522 = E(l - fl)ezz(D) + 5(1 + 51)6’11(3) - (1 - (51)2) *9

€1p = €p(E) + %él(e“(C) —e(A) + %52(622(3) —en(D)) +&'&%,,

where
B cy(co + ¢5) cy(cy = €3)
& = _%dze“(f;) + %dzen(c) _
cileg +¢1) cileg +¢1) 2c10y(cp + )
2d € (D) + 2 €5 (B) — TED(E) (76)
and
d:cé—cf—cg. 77)

5.2. Potential energy, its variation and linearization

The total potential energy of the derived shell finite element with
the Saint-Venant Kirchhoff constitutive relation, elastic foundation and
surface loading p can be written as, see (22):

He(U)=/ E—h(eANS~H€ANS+h—2x~HK)dAe—
Me 2(] —V2) 12

/ U~pdAe+/ %KS (Us)? dAC. (78)
e Me

Here, eAVS and « are vector fields, see Eq. (18), obtained from ex-
pressions in Section 2 by using the initial configuration data and U
from (50), which is composed of the mid-surface displacement u =
ij 1Ny yu and the rotation-related vector fields that are completely
defined by the interpolation functions (121)-(123) and nodal dofs.
The ANS subscript in (78) reminds that the membrane strains are
computed in accordance with the developments from Section 5.1.
Furthermore, H is from Eq. (21), and M¢ denotes the mid-surface of the
shell finite element in the undeformed configuration. Numerical tests
demonstrated that replacement of U in the last two integrals in (78)
with simpler & = ¥;_, N ;(£',&%),u, where N are the bilinear Lagrange
interpolation functions, yields a negligible difference in results. The
variation of the potential energy of the element is

=0, (79)
=0

where ¢ is a scalar parameter. By applying the formalism (79) in
Eq. (78) one gets

sI° = % [IT°(U + £6U)]

2
611°(U, 6U) =/ LR (54N HeANS + s Hi)ae
Me 1—\/2 12
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—/ 6U~pdA"+/ 6U; K, Uy dA°® = 0. (80)
Me Me

The area integrals of the derived element are computed by using the
5 integration point scheme, see e.g. [33], shown in Fig. 5, which for
the considered element yields practically the same results as the 3 x 3
Gauss numerical integration rule.

The discretized form of the potential energy (22) and its variation
(23) can be written as

m=ANTe, s =ANs1¢ =0, (81)

where A is the finite element assembly operator and N,, is number of el-
ements in the mesh. To solve the resulting system of equilibrium equa-
tions by the incremental-iterative Newton—-Raphson method, equation
(80) must be consistently linearized. We performed the linearization by
using Mathematica [34] and its add-on AceGen [35].

6. Numerical examples

The above shell formulation, denoted hereinafter as DKQ-5, was
transformed into a computer code using Mathematica’s add on Ace-
Gen [35], which enables an automatic differentiation of large ex-
pressions and algorithms. The computer code for the DKQ-5 was in-
corporated into the finite element computer program AceFEM [36],
which was used to compute the examples presented below. Structured
and distorted meshes were used, with mesh distortion described as
r = L,,/L,y, where L, and L, are the chosen edge lengths of
the largest and smallest finite element in the mesh. For comparison,
we also present the results of MITC4 finite element (hereinafter re-
ferred to as RM-5), which is the isoparametric, 4-node element, with
Reissner-Mindlin kinematics and Bathe-Dvorkin ANS interpolation for
the transverse shear strains [37]. Unless stated otherwise, the load
control was applied.

6.1. Eigenvalues and eigenmodes

Following [4], we computed eigenvalues of linear stiffness matrix of
a single finite element. We choose two geometric configurations, shown
in Fig. 6(a) and (b), and the data:

a =2 mm, h =0.02 mm, E = 10® MPa, v=03. (82)

The first six eigenvalues were zero, indicating that DKQ-5 correctly
describes rigid body motions. Fig. 6(a) shows that the DKQ-5 and RM-5
eigenvalues are similar up to the 11th mode and also from the 16th to
20th mode. For lower modes of the distorted element, see Fig. 6(b), the
similarity is up to the 10th mode. The eigenmodes for the square DKQ-5
element presented in Fig. 7 indicate that the modes 7-15 are bending
modes and the modes 16-20 are membrane modes. For comparison,
eigenmode 13 is also represented in bilinear representation (see 13*
in Fig. 7). Due to the use of higher order interpolation, the bending
eigenmodes of DKQ-5 are much more complex than those of RM-
5. DKQ-5 has more bending modes than RM-5, because the latter
element also has some transverse shear modes between its bending and
membrane modes. This is the reason why the RM-5 curve in Fig. 6(a)
and (b) has a jump before the DKQ-5 curve.

In Fig. 6(c) and (d), we show eigenvalues of the linear stiffness
matrix obtained for mesh of 10 x 10 flat square elements. The dis-
placements are restricted at two opposite edges of the mesh with the
following properties:

w=20mm, h={0.02 for case c),0.002 for case d)} mm,
(83)

E=10° MPa, v=023.

The shapes of the curves are similar to those for single elements.
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Fig. 6. Linear stiffness matrix eigenvalues for: (a) flat square element, (b) distorted element, (c) and (d) mesh of 10 x 10 elements, simply supported at two opposite edges.

6.2. Patch tests

The mesh in Fig. 8 is used for the membrane patch test, with the
positions of the interior nodes given as N5 = {0.039,0.021,0}, Ng =
{0.18,0.03,0}, N7 = {0.159,0.081,0} and Ny = {0.081,0.081,0} mm. The
following boundary displacements are set to zero: at node 2 in the x
and z-directions, at node 3 in all three directions, and at node 4 in the
y and z-directions. At nodes 1 and 4, forces are applied. The rest of the
data are:

L =0.24 mm,
E=1-10° MPa,

w=0.12 mm,
v =025,

h =0.001 mm,
F,=-12N.

(84)

The analytical solution for the strains

€1 =2-1072, e,=-5-1073,  ¢,=0, (85)
and displacements at nodes 1,2 and 4
(u={-48-1073,6-107*,0) mm, ,u={0,6-10"%0} mm, (86)

Ju={-48-1073,0,0} mm

are matched exactly by DKQ-5 (at the integration points and nodes,
respectively).

The same mesh and material properties are assumed for another
membrane patch test, see Fig. 9, where displacement control is used.
The displacements and rotations are set to zero at node 1. At nodes 2,



T. Veldin, B. Brank and M. Brojan Thin-Walled Structures 168 (2021) 108268

9. 10. 11.

oo

8.
12. 13.

17.

T

Fig. 7. Eigenmodes of DKQ-5 finite element, case (a) in Fig. 6. Eigenmode 13.* is bilinear representation of eigenmode 13.

a ) support Il b)

/_— support Il

w
X

w
support |

Fig. 8. Membrane patch test with imposed forces: (a) undeformed and (b) deformed configuration (scaling factor is 10).

a) /y« b)

support |

Fig. 9. Membrane patch test with imposed displacements: (a) undeformed and (b) deformed configuration (scaling factor is 250).

3 and 4, the displacements are imposed as: 6.3. Hemispherical shell: linear analysis

Ju={L, 5,0} 2107 mm, ju={(L+ ﬂ),(E +w),0} - 1073 mm,
2 2772 Convergence analysis for a double-curved hemispherical shell with a

(87) hole was performed. Due to the symmetry, see Fig. 10, only one quar-

= (% 0,0} 1073 mm ter of the hemispherical shell was meshed and appropriate boundary
2 conditions were taken into account. For the mesh edge “support I” in

The analytical solution for the strains [38] Fig. 10(a), the displacement in the y-direction and rotation around the
1 edge are zero (displacement in the z-direction at the top node of that

€11 =€y = S€n = 1073 (88) edge is also zero), and for the “support II” edge, the displacement in the

x-direction and rotation around the edge are restrained. The following

is matched exactly by DKQ-5 at the Gauss points. The same geometry data were used:

can also be used in the bending patch test. Unfortunately, DKQ-5 does
not pass the bending patch test. R =10 mm, @ =72°, h =0.04 mm, r=16, (89)

10
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Fig. 10. Hemispherical shell: (a) undeformed and (b) deformed configuration meshed with 10 x 10 elements (scaling factor is 10).
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Fig. 11. Hemispherical shell: convergence plots for (a) displacement of node A in x direction, (b) displacement of node A in z direction, and (c) displacement of node B in y

direction.

E=6825-10" MPa, v=03,  F,=4N.

Note that only one force is applied to one quarter of the shell, which
is in contrast to the standard benchmark test, see e.g. [38] and [39],
where one inward and one outward forces are applied.

The convergence of the displacements at nodes A and B (see Fig. 10)
is shown in Fig. 11. In all cases the mesh consisted of n x n elements.
We can see that RM-5 converges slightly better than DKQ-5 for the
structured mesh, but it is much worse for the distorted mesh. In fact,
the DKQ-5 convergence properties for the distorted mesh change only
slightly in comparison with the structured mesh. The converged values
for the displacements from Fig. 11 are 0.206, 0.088 and —0.166 mm,
respectively.

6.4. Pinched cylinder: linear analysis

We consider a pinched cylinder, studied before in e.g. [1] and [40].
In Fig. 12, a mesh for one eight of the cylinder is shown that can be
applied (with appropriate boundary conditions) because of the sym-
metry. The following boundary displacements and rotations are set to
zero: at the mesh edge “support I”, the displacement in the y-direction
and rotation around the edge; at “support II”, the displacement in the
x-direction and rotation around the edge; at “support III”, the displace-
ments in the x and z-directions; and at “support IV”, the displacement
in the z-direction and rotation around the edge. The geometric and

11

material properties are:

R =300 mm,
E =3-10° MPa,

w = 300 mm,

v=0.3,

h =3 mm,

F,=-25-10* N.

r=16, (90)

Convergence plots for the displacements at nodes A and B, see
Fig. 12(a), are shown in Fig. 13. The mesh consisted of nxn elements in
all cases. For a structured mesh, convergence with DKQ-5 and RM-5 is
reached with 10 x 10 and 18 x 18 meshes, respectively. For distorted
mesh, this happens for 18 x 18 and 26 x 26 meshes. The converged
displacements for Fig. 13(a) and (b) are —4.929 - 103 and —1.825 mm.

6.5. Twisted beam: linear analysis

The twisted beam example has been studied in e.g. [41] and [40].
The beam in Fig. 14 is clamped at one end and subjected to a force at
the other end. Its cross-section is horizontal at the clamped edge and
twisted by g around x where the force acts. The meshes consist of nxm
elements, with m = 6 X n. The rest of the geometric and material data
are:

L =12 mm, w=1.1 mm, h =0.0032 mm, r=2,

(91)
E =29-10° MPa,

v=022, F,=1-10°N.

Fig. 15 shows the convergence of displacements in the y and z-
direction at node A. For displacements at Fig. 15(a) and (b), the
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Fig. 12. Pinched cylinder: (a) undeformed and (b) deformed configurations meshed with 10 x 10 elements (scaling factors is 30).
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Fig. 13. Pinched cylinder: convergence plots for (a) displacement at node A in x direction, and (b) displacement at node B in z direction.

Fig. 14. Twisted beam: (a) undeformed and (b) deformed configuration meshed with 4 x 24 elements (scaling factor is 500).
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Fig. 15. Twisted beam convergence plot for: (a) displacement of node A in y, (b) displacement of node A in z.

converged values are 1.29 - 10~ and —1.87 - 10~ mm. For structured convergence already with mesh 6 x 36. Note that if the mesh distortion
mesh, both elements reach convergence with 4 x 24 elements. For is increased to r = 16, DKQ-5 needs twice denser mesh of 12 x 72 ele-
distorted mesh, RM-5 performs very poorly, and it converges only for ments to converge, while RM-5 needs extremely fine mesh of 120 x 720

fine mesh of 40 x 240 elements. On the other hand, DKQ-5 reaches elements.

12
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Fig. 16. L-shaped plate: (a) undeformed and (b) deformed configuration meshed with 6 x 6 x 2 elements (scaling factor is 0.01).
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Fig. 17. L-shaped plate convergence plot for: (a) displacement of node A in z-direction, (b) deformation energy.
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Fig. 18. Hemispherical shell, nonlinear analysis: (a) undeformed and (b) deformed configuration meshed with 14 x 14 elements.

6.6. L-shaped plate: linear analysis

The L-shaped plate has been studied in e.g. [7]. The plate in Fig. 16
is simply supported at all exterior edges and free at the two interior
edges. It is subjected to the uniform pressure. The mesh consists of
nxnx?2 distorted finite elements. The geometric and material properties
are:

L=1m, h=1-10"*m,
E =200-10° Pa, v=023.

p=1.848 Pa, (92)

Fig. 17(a) shows the convergence of displacement in the z-direction
at node A and Fig. 17(b) convergence of the deformation energy of
the system. The results of DKQ-5 are compared with discrete Kirchhoff
plate element (DKQ) described in [42], RM-5, and shell finite element
from [7]. All elements converge to displacement 36.817 mm and defor-
mation energy 162.992 J, computed with a mesh of 500 x 500 x 2 DKQ
elements. The DKQ-5 convergence is the slowest. We may conclude
that the reason for poor convergence of DKQ-5 in this example is the
singularity in the re-entrant corner. The singularity point influences
DKQ-5 more than other formulations.

13

6.7. Hemispherical shell

A nonlinear analysis of hemispherical shell, a popular benchmark
test [43] and [39], was performed. In Fig. 18(a), the geometry of one
quarter of the hemisphere is shown with the displacement/rotation
boundary conditions, which are the same as in Example 6.3. We note,
however, that two forces are acting on one quarter of the shell in the
nonlinear example. Geometrical and material data are also the same,
only force F, is added:

R =10 mm, @ =72°, h =0.04 mm, r=16, (93)
E=6825-10' MPa, v=03, F,=-F,

In Fig. 18(b), the deformed configuration is shown. The DKQ-5 and
RM-5 results are compared with reference results from [43] in Fig. 19:
displacements at nodes A and B are shown for mesh 14 x 14. Fig. 19(a)
shows the results for the structured mesh, and Fig. 19(b) shows the
results for the distorted mesh. We can see that DKQ-5 matches well
the reference values, while RM-5 does not. For the distorted mesh,
the difference between DKQ-5 (which is in good agreement with the
reference values) and RM-5 is even more pronounced.
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6.8. Cylindrical panel

One-edge-clamped cylindrical panel is loaded with line moment as
shown in Fig. 20(a). The geometrical and material parameters are taken
from [4]:

R =20 mm, w =10 mm, @ =30°, h =0.002 mm,

(94

r=12, E =2.1-10° MPa, v =0.0.

With Poisson’s ratio set to zero, this is a pure one-dimensional bending
test.

In Fig. 20(b), the deformed configuration of the pinched cylinder is
shown for the 4 x 4 mesh. The displacements at node A are shown in
Fig. 21 for both structured and distorted 4 x 4 mesh. For structured
mesh, the DKQ-5 curves match the reference curves, while the RM-
5 curves differ from the reference ones (although not shown, they
get much closer for the 8 x 8 mesh). For the distorted mesh, DKQ-5
still behaves excellently, while RM-5 totally fails. Note that very fine
80 x 80 distorted mesh is needed for RM-5 to match the reference
curves, while DKQ-5 matches them quite well already for the 8 x 8
mesh.

6.9. Twisted beam

The twisted beam example from Section 6.5 is also used for the
nonlinear analysis, and the results are compared with those from [43].
We use structured and distorted 4 x 24 mesh. Two load cases are
considered, shown in Figs. 22 and 24. The geometrical and material
parameters are:

L =12 mm,
r=2,  E=29-107 MPa,

w=1.1 mm, h =0.0032 mm,

v=0.22.

(95)

Fig. 23 shows displacement curves for node A for the first loading
case. For the structured mesh, the DKQ-5 curves align very well with
the reference curves from [43]. A similarly good match is obtained
also for the RM-5 curves for displacement u,, but not for displacement
u, (we note that the latter RM-5 curve almost perfectly aligns with
the reference one for denser 12 x 72 mesh). For the distorted mesh,
the DKQ-5 curves still match very well with the reference curves. On
the other end, the RM-5 curves differ significantly (and come close
to the reference ones only for very fine 32 x 192 mesh). Fig. 25
presents displacements at node A for the second load case. For the
structured mesh, DKQ-5 shows very good alignment with the reference
curves (practically perfect alignment is reached for the 8 x 48 mesh).
On the other hand, the RM-5 results differ from the reference curves
considerably (although not shown, they come very close only for fine
16 x 96 mesh). For the distorted mesh, the RM-5 results are extremely
poor and the convergence is lost, while mesh distortion does not affect
the DKQ-5 results at all (note that for mesh refinement to 8 x 48
elements, we reach a practically perfect alignment between DKQ-5 and
reference curves).
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Hemisphere shell, nonlinear analysis: displacement comparison for (a) structured mesh and (b) distorted mesh.

6.10. Helical beam

Following [4], we analyse clamped beam with cross section rotating
by 360° along the beam axis, see Fig. 26(a), where the loading is also
shown. The following geometrical and material data apply:

L =10 mm,
r=2,  E=29-10% MPa,

h =0.0032 mm,
v =0.22.

(96)

w =4 mm,

We used structured and distorted meshes with 6 x 20 finite elements.

The DKQ-5 curves in Fig. 27 match very well the reference curves
for both, structured and unstructured mesh. On the other hand, the
RM-5 results for the distorted mesh are very poor: zero displacement
in the y-direction and linearly varying displacement in the z-direction
are computed for the increasing load and unstructured mesh, while for
the structured mesh they show a rather good match. Note that DKQ-
5 yields a practically perfect alignment with the reference curves for
both structured and distorted meshes when 12 x 40 elements are used,
and RM-5 yields a good match with the reference curves for 12 x 40
structured mesh and 30 x 100 distorted mesh.

6.11. Raasch’s hook

Raasch’s hook is a difficult test for shell finite elements, see e.g. [4]
and [43]. The hook is clamped at one edge and subjected to point
force at the opposite edge, see Fig. 28. The hook was meshed with
(2N +3N)X N finite elements, where N is a number of elements across
the width of the hook, 2N is a number of elements across radius r,
and 3N is a number of elements across radius R. Used material and
geometrical data were the same as in [4]:

R =46 mm, r =14 mm, w =20 mm, @ = 150°,
97)
B =60°, h =0.02 mm,

E =33-10° MPa, v=0.3,

rp=2,

The results are presented in Fig. 29, where displacements at node
A in the x and z directions are shown. For Fig. 29(a), a structured
mesh with (8 + 12) x 4 elements was used, and for Fig. 29(b), the same
number of elements were used for distorted mesh with distortion factors
rg and r,. From Fig. 29(a) we can see a noticeable difference from
the reference curves for the DKQ-5 element. The RM-5 curves differ
even more from the reference curves. From Fig. 29(b) we can observe
that mesh distortion does not influence much the DKQ-5 results. On
the contrary, RM-5 results suffer a lot from the mesh distortion. For a
denser mesh with N = 16, we get an excellent match with the reference
results from [4] for DKQ-5.

6.12. Hemisphere on elastic substrate
In the final example, we test our finite element formulation on a

hemisphere, attached to an elastic foundation. We want to check if
the DKQ-5 results are comparable with those presented in the [25],
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Fig. 20. Cylindrical panel, nonlinear analysis: (a) undeformed and (b) deformed configuration meshed with 4 x 4 elements.
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Fig. 21. Cylindrical panel, nonlinear analysis: displacement comparison for (a) structured mesh and (b) distorted mesh.
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Fig. 22. Twisted beam, nonlinear analysis for vertical load: (a) undeformed and (b) deformed configurations meshed with 4 x 24 elements.
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Fig. 23. Twisted beam, nonlinear analysis for vertical load: displacement comparison for (a) structured mesh and (b) distorted mesh.
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Fig. 24. Twisted beam, nonlinear analysis for horizontal load: (a) undeformed and (b) deformed configuration meshed with 4 x 24 elements.
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Fig. 25. Twisted beam, nonlinear analysis for horizontal load: displacement comparison for (a) structured mesh and (b) distorted mesh.

Fig. 26. Helical beam: (a) undeformed and (b) deformed configurations meshed with 6 x 20 elements.
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Fig. 27. Helical beam: displacement comparison for (a) structured mesh and (b) distorted mesh.

where a special-purpose element was used. The material and geometric
parameters are:

R =20 mm, h={04,0.6,0.8,1.0} mm, E =2.1 MPa,

(98)

v =0.49, K, ={0.2610,0.1738,0.1302,0.1039} N/mm?.

where K, is the stiffness of elastic foundation (that has direction
towards the centre of the radius of the hemisphere) representing the
substrate. As the parameter set (98) suggests, four different cases are
solved. Only for the purpose of this example, the element formulation

16

was redesigned in order to have displacements in the nodes of DKQ-5 fi-
nite element in the local orthonormal coordinate systems ; E |, ; E,, ; A3.
This enabled restraining the displacements in the tangential direction
on the bottom edge of the shell (both rotations were restrained too).
The path-following method [44] was used to compute the solution.
There are multiple buckling modes close to one another, but we man-
aged to get the one with the minimal energy by using the fact that
the meshing can be never symmetric for the half-sphere (due to Euler’s
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b)

Fig. 28. Raasch’s hook: (a) undeformed and (b) deformed configurations of the mesh with (8 + 12) x 4 finite elements.
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Fig. 30. Development of the normal displacement field u; on the hemisphere under pressure p. The data are: R = 20.0 mm, A = 0.8 mm, E = 2.1 MPa, v = 0.49 mm,

K, =0.1302 N/mm?, and the number of elements is 148512.

theorem on tessellations by polygons), which imposes an initial mesh-
imperfections that change the first bifurcation point into the limit
point.

In Fig. 30, the evolution of the wrinkling pattern of the hemi-
sphere is shown for the thickness of the shell & 0.8 mm. By
comparing Fig. 30 with the results from [25], we found that dimpled
pattern starts to form at approximately the same pressure (i.e. p
—238 kPa). We also found that the distances between the dimples
are similar. In addition to the results shown in Fig. 30, we also
performed analysis for three other cases. In Fig. 31, the final defor-
mation configurations are shown for all four analysis. For each case,
we counted the number of dimples, calculated the average character-
istic wavelength and its standard deviation. The number of dimples

~
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(left to right with respect to Fig. 31) was (227,97,56,33), the aver-
age characteristic wavelength was 4 = (3.522,5.250, 6.959,8.675) mm
and the standard deviation was (0.374,0.245,0.338,0.411) mm for each
element of the parameter set. Theoretically calculated wavelengths
(see [45]) are A = (3.642,5.463,7.283,9.104) mm, which means that
only (3.3,3.9,4.4,4.7) % relative difference is obtained via our nu-
merical procedure. For example in [25], the average characteristic
wavelengths for the same cases, as shown in the Fig. 31, are A
(3.488,5.149,6.988,8.552) mm with standard deviation (0.317,0.425,
0.528,0.817) mm. The relative difference compared to the theoretically
calculated values are (4.2,5.7,4.1,6.1) %. From the relative difference,
we can see that for almost all cases the DKQ-5 finite element model
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Fig. 31. Fully developed wrinkling patterns on the hemispheres for different K, and h.

gives slightly better results than the model presented in [25]. The
exception is only the 3rd case with thickness 4 = 0.8 mm.

7. Conclusion

We have applied the concepts of the discrete Kirchhoff formula-
tions (classically used for derivation of near optimal plate elements)
to derive a non-linear discrete Kirchhoff-Love four-node quadrilateral
shell finite element. The element uses interpolations that yield from
the cubic Hermite curves and bilinear Coons surface patch and impose
the G'-continuity at the nodes. The major advantage of the presented
formulation, with respect to the full Kirchhoff-Love shell formulations,
is that it has less dofs/nodes. In fact, the element has 5 degrees of
freedom per node, three displacements and two rotations, i.e. the
same number as the standard Reissner-Mindlin shell quadrilaterals (cf.
e.g. MITC4 evaluated in e.g. [4]), but satisfies more stringent demands
on the geometric continuity of the approximated shell mid-surface.
The rotational degrees of freedom rotate the nodal tangent plane to
the mid-surface as well as the nodal normal-to-the-mid-surface unit
vector. The presented element uses the same data as the Reissner—
Mindlin quadrilaterals to construct the mesh: nodal coordinates and
mid-surface normal vector. The advantages of the present element over
the Reissner-Mindlin formulations are the complete elimination of the
transverse shear deformations and thus the elimination of the shear
locking. Also the implementation of the hyperelastic and (elastoplastic)
material models (given in terms of principal stretches) can be simpler.

There have been a very few attempts to construct nonlinear discrete
Kirchhoff-Love shell quadrilaterals. As shown in this work, this is not
quite straightforward, an important issue being membrane locking. In
order to eliminate the membrane locking, we used assumed natural
strain method proposed in [3], which also makes quadrilateral shell
formulations less sensitive to mesh distortion (as shown, e.g., in [4]).
Our numerical experiments indicate that the derived element is almost
insensitive to mesh distortion as long as the distortion is not too ex-
treme. The element has six zero eigenvalues and passes the membrane
patch test. As for the bending patch test, it passes it for the structured
meshes but fails it for the distorted meshes, which ia a common prob-
lem of shell elements with higher-order interpolation. Nevertheless, the
performance of the derived element in linear and non-linear settings
is very good. The results of simulations on the shell-substrate systems
shown that the derived element can also be successfully used to solve
wrinkling problems. The presented discrete Kirchhoff-Love shell formu-
lation can be seen as a step towards a G'-conforming Kirchhoff-Love
shell element that exploits surface patches and possesses G!-continuity
along the complete boundary of the element.
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Appendix

A.1. Solution of the curve functional

The functional is defined in (25) and the accompanying boundary
conditions are given in (27). By writing the Lagrange function

L =L R@®), R, R®")=RO®" - R®)", 99)
R(?) can be found from the condition:
5|
SI(R) = / SL(t, R, R, R(t)")dt = 0. (100)
fp
Variation of the Lagrange function is
oL oL ’ JL ”
6L=—  -6R+ — -6R"+ — - 6R". 101
oR oR’ oR" (10D
If (101) is inserted into (100), we get
oL oL oL
SI(R) = — .6R+ — -6R' + — - 6R")dt =0, 102
(B /, (0R TR TR ) (102)

0
where 6R’ = d6R/dt, and 6R" = d?6R/dt*. We integrate the second
and the third expression inside the brackets in (102) by parts. First we
integrate by parts the second expression

oL
/,OW'

SR'dt =

I I 1
/ "—L,-@dz=["—L/-5R] —/ aR-i<a—L,>dt. (103)
w OR di IR w I dr\ oR
We proceed by integrating by parts the third expression
I
/ a—I‘,,~5R”dt=
to OoR
/’1 oL d*R, _[oL dsR]"
w OR" di? oR” dt |
5|
-/ 4ok . i( aLH>dt. (104)
w dt dt\ R

We further integrate by parts the second expression in (104)

/ II
To

oL

dzéRd_
oR” =

dr?
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1 1
OL déR|" _|d( oL\, R 2/E,-;E| jE| - [Ey jE) - X; =2 E - ;E) (E;- ;E; (E;- X; -
oR" dt . dt \ oR" . 2
0o 0 0 41E - jEy) jE) - X1+ (E - jEy GE - [Eyp)” jEy - X1 —
'd oL
+/ _2<_”> . 5Rdt. (105) Eiv-yE| JE| - [Ey [E;- jE, jE, - X
i d2 \oR ,
Now we can reorganize (102) as +(_1E1 B (_4 +TGE 1By ) +
oL oL noogn d (oL >
6I(R) = — ‘6Rdt+ |— -O0R| - O6R- — | — |dt E -,E ;E,-,E, (E,-;E E,-X Q, (116)
(R) /anR [aR’ ]fo /to dt(aR’) 111111121212)12 7))/
o 1
a5 2] - [5(35)
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N g2/ oL %=\ 3 <<—4+(1E1'1E2))1E1'1E2 GE - X;—,E; - X))
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Euler-Lagrange equation as: JE - 1Ey (2,E-X; -2 ,E - X;+E,-jE, (—;E, - X,
oL d (oL d> ( oL
e _ () (22 )=, 108 . )
IR dt<0R’> dzZ(aR“> (108) i X)) ))/Q, o
In (108) we need the following derivatives
oL oR" " k
SR-2orR R =0, (109) qyu=13 (‘2 <_4+(1E1'JE2)2)(JE1'XI_JEI'XJ)+
oL OR" 1Ey - jEy (—(E| - X+ E |- X)) E| - [Ey [Ey- jEy
ﬁzzaR’ ‘R =0 (110) +GE - yE)’ JE; - (Ey GEy- X — By - X))+
and 4,E |- (Ey (—Ey- X+ Ey- X))
—;;L,, =2R". (111) +1E - s E <1E1 X (—4+(1E2~JE2)2> -
Egs. (109)-(111) are inserted into Euler-Lagrange equation (108) to get 1E Xy (—4 +(E,- JEZ)Z)
2 +E - ;E, (1E2'1E2 (—1Ey - X+ 1E,- X))+
ﬁ<2RN> =2R"" =0, (112)
t

2(GEy- Xy — Ey- Xﬂ)) +2,E;- B,
The solution of the differential equation of the 4th order R(?)"""" = 0 is
X <(—JE1 ‘Xr+ E - X)) (Ey- jEx +

R(t) =£°C, +1°Cy +1C, + C,. (113)

We write also natural boundary conditions based on Eq. (107) JE - 1Ey (GE,-X;— ;E, - XJ))> )/Q, (118)
1 1 1

s ] 3 ] (13 e

Variations of geometrical boundary conditions written in Eq. (27) are Ja= (3 <1E1 “yEy (—1Ey - X+ B X)) yEy - By By En

5R(ty) = 6R(t,) = 6R'(t;) = 6R'(1,) = 0, (115)

rEy - S E, <1E1 X <_4+(1E1 'IEZ)Z)

d Eq. (114) is trivially fulfilled.
and Eq. (114) is trivially fulfille B, X, <—4+(,E1-,E2)2)+

A.2. Components of the covariant tangent basis vectors 1E, - E, (ZJEl X, -2,E,-X,;+,E, - (E,(—E,- X, +

The components of the covariant tangent basis vectors which we get 1E;- Xﬂ)) +GE, - JE1)2<IE2 s Ey G Ey- Xy = Ey- X))
by solving the system of Egs. (38) are
Y & the sy as- (38) <2 By X, 42, By X, ) +
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4GE,  E)* +(E, -,E1)2<—4+(,E2-JE2)2)> . (120)

A.3. Interpolation functions

The interpolation functions in (48)-(50), which stem from the cubic
Hermite edge curves and the bilinear Coons patch, have the following
form:

N AGRSIE —%(51 —DE - DE2+E +EP+E+ @D,

(121)
SN (€L = %(51 +DE - D2 -+ (@D +E+ED,
3Ny = —%(él +DE+ D2 -+ (€D -8+,
NIELE) = 2@ - D@+ D24+ P -8+ @R,
NAGRSE —%(:1 - DE +DE -, (122)
WMo ) =~ (@ + 1PE - D@ - 1,
3Ny(E ) = %(5‘ +DE - DE+ ),
WV ELE) = %(El - 1PE +DE+ D,
TAGRDE —%(zsl - DE-DXE+D), (123)
SN, &) = %(51 +DE - DXE+ ),
1

sN3EL e = ¢+ DE + 1% -1,
N3 8D =~ 5@ = E + 1D2E - 1.
References

[1] J.C. Simo, D.D. Fox, M.S. Rifai, On a stress resultant geometrically exact shell
model. Part III: The linear theory, Comput. Asp. Comput. Methods Appl. Mech.
Eng. 73 (1989) 53-92.

[2] B. Brank, D. Peri¢, F.B. Damjani¢, On large deformations of thin elasto-plastic
shells: Implementation of a finite rotation model for quadrilateral shell element,
Internat. J. Numer. Methods Engrg. 40 (1997) 281-306.

[3] G.M. Kulikov, S.V. Plotnikova, A family of ANS four-node exact geometry
shell elements in general convected curvilinear coordinates, Internat. J. Numer.
Methods Engrg. 83 (2010) 1376-1406.

[4] M. Lavrenci¢, B. Brank, Hybrid-mixed shell quadrilateral that allows for large
solution steps and is low-sensitive to mesh distortion, Comput. Mech. 65 (2020)
177-192.

[5] F. Gruttmann, W. Wagner, A linear quadrilateral shell element with fast stiffness
computation, Comput. Methods Appl. Mech. Engrg. 194 (2005) 4279-4300.

[6] Y. Vetyukov, Finite element modeling of Kirhhoff-Love shells as smooth material
surfaces, ZAMM J. Appl. Math. Mech. 1 (2014) 150-163.

[7] L. Greco, M. Cuomo, An implicit G1-conforming bi-cubic interpolation for the
analysis of smooth and folded Kirchhoff-Love shell assemblies, Comput. Methods
Appl. Mech. Engrg. 373 (2021) 113476.

[8] G. Farin, Curves and Surfaces for CAGD - A Practical Guide, Elsevier, 2002.

[9] T.W. Sedeberg, J. Zheng, A. Bakenov, A.H. Nasri, T-splines and T-NURCCs, ACM
Trans. Graph. 22(3) (2003) 477-484.

[10] M. Cuomo, L. Greco, An implicit strong Gl-conforming formulation for the
analysis of the Kirchhoff plate model, Contin. Mech. Thermodyn. 32 (2020)
621-645.

[11] M. Cuomo, L. Greco, A quadrilateral Gl-conforming finite element for the
Kirchhoff plate model, Comput. Methods Appl. Mech. Engrg. 346 (2019)
913-951.

[12] T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl.
Mech. Engrg. 194 (2005) 4135-4195.

[13] J. Kiendl, K.U. Bletzinger, J. Linhard, R. Wiichner, Isogeometric shell analysis
with Kirchhoff-Love elements, Comput. Methods Appl. Mech. Engrg. 198 (2009)
3902-3914.

20

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Thin-Walled Structures 168 (2021) 108268

J. Kiendl, K.U. Bletzinger, J. Linhard, R. Wiichner, The bending strip method for
isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple
patches, Comput. Methods Appl. Mech. Engrg. 199 (2010) 2403-2416.

J.-L. Batoz, M.B. Tahar, Evaluation of a new quadrilateral thin plate bending
element, Internat. J. Numer. Methods Engrg. 18 (1982) 1655-1677.

U. Bohinc, A. Ibrahimbegovic, B. Brank, Model adaptivity for finite element
analysis of thin or thick plates based on equilibrated boundary stress resultants,
Eng. Comput. 26 (1/2) (2009) 69-99.

U. Bohinc, B. Brank, A. Ibrahimbegovic, Discretization error for the Discrete
Kirchoff plate finite element approximation, Comput. Methods Appl. Mech.
Engrg. 269 (2014) 415-436.

J.L. Batoz, C.L. Zheng, F. Hammadi, A quadrilateral G1-conforming finite element
for the Kirchhoff plate model, Internat. J. Numer. Methods Engrg. 52 (2001)
615-630.

S. Jaamei, F. Frey, P. Jetteur, Nonlinear thin finite element with six degrees of
freedom per node, Comput. Methods Appl. Mech. Engrg. 75 (1989) 251-266.
F. Damak, S. Abid, A. Gakwaya, G. Dhatt, A formulation of the non linear discrete
kirchhoff quadrilateral shell element with finite rotations and enchaned strains,
Rev. Eur. Elém. Finis 14 (2005) 7-31.

P.M.A. Areias, J.H. Song, T. Belytschko, A finite-strain quadrilateral shell element
based on discrete Kirchhoff-Love constraints, Internat. J. Numer. Methods Engrg.
64 (2005) 1166-1206.

J. Simo, On a stress resultant geometrically exact shell model. Part VII: Shell
intersections with -DOF finite element formulations, Comput. Methods Appl.
Mech. Engrg. 108 (1993) 319-339.

J.C. Simo, D.D. Fox, On a stress resultant geometrically exact shell model. Part I:
Formulation and optimal parametrization, Comput. Methods Appl. Mech. Engrg.
72 (1989) 267-304.

A.E. Green, W. Zerna, Theoretical Elasticity, Dover Publications, 2012.

T. Veldin, B. Brank, M. Brojan, Computational finite element model for surface
wrinkling of shells on soft substrates, Commun. Nonlinear Sci. Numer. Simul. 78
(2019) 104863.

T. Veldin, M. Lavrenci¢, B. Brank, M. Brojan, A comparison of computational
models for wrinkling of pressurized core-shell systems, Int. J. Non-Linear Mech.
4 (2020) 1-5.

G. Jakli¢, E. Zagar, Curvature variation minimizing cubic Hermite interpolants,
Appl. Math. Comput. 218 (2011) 3918-3924.

J.H. Yong, F. Cheng, Geometric Hermite curves with minimum strain energy,
Comput. Aided Geom. Design 21 (2004) 281-301.

M. Lavrenci¢, B. Brank, Hybrid-mixed low-order finite elements for geometrically
exact shell models: Overview and comparison, Arch. Comput. Methods Eng. 28
(2021) 1-35.

B. Brank, A. Ibrahimbegovi¢, On the relation between different parametrizations
of finite rotations for shells, Eng. Comput. 7 (2001) 950-973.

A. ITbrahimbegovic, B. Brank, P. Courtois, Stress resultant geometrically exact
form of classical shell model and vector-like parameterization of constrained
finite rotations, Internat. J. Numer. Methods Engrg. 52 (2001) 1235-1252.

H. Roh, M. Cho, The application of geometrically exact shell elements to B-spline
surfaces, Comput. Methods Appl. Mech. Engrg. 193 (2004) 2261-2299.

A.A. Groenwold, N. Stander, An efficient 4-node 24 D.O.F. thick shell finite
element with 5-point quadrature, Eng. Comput. 12 (1995) 723-747.

1. Wolfram Research: Mathematica, Version 11.3. 2018, Champaign.

J. Korele, P. Wriggers, Automation of Finite Element Methods, Springer
Inter-national Publishing, 2016.

J. Korelc, AceFEM, 2020, available at http://symech.fgg.uni-lj.si/.

E. Dvorkin, K.J. Bathe, A continuum mechanics based four-node shell element
for general nonlinear analysis, Eng. Comput. 1 (1984) 77-88.

R. Macneal, R. Harden, A proposed standard set of problems to test finite element
accuracy, Finite Elem. Anal. Des. 1 (1) (1985) 3-20.

M. Lavrenc¢i¢, B. Brank, Simulation of shell buckling by implicit dynamics and
numerically dissipative schemes, Thin-Walled Struct. 132 (2018) 682-699.

B. Brank, F.B. Damjani¢, D. Peri¢, On implementation of a nonlinear four node
shell finite element for thin multilayered elastic shells, Comput. Mech. 16 (5)
(1995) 341—359.

Y. Ko, Y. Lee, P.S. Lee, K. Bathe, Performance of the MITC3+ and MITC4+
shell elements in widely-used benchmark problems, Comput. Struct. 193 (2017)
187-206.

B. Brank, A. Ibrahimbegovi¢, U. Bohinc, On discrete-kirchhoff plate finite
elements: Implementation and discretization error, in: H. Altenbach, G. Mikhasev
(Eds.), Shell and Membrane Theories in Mechanics and Biology: From Macro- to
Nanoscale Structures, Springer International Publishing, Switzerland, 2015, pp.
109-131.

Y. Ko, P.S. Lee, K.J. Bathe, The MITC4+ shell element in geometric nonlinear
analysis, Comput. Struct. 185 (2017) 1-14.

A. Stani¢, B. Brank, J. Korelc, On path-following methods for structural failure
problems, Comput. Mech. 58 (2016) 281-306.

M. Brojan, D. Terwagne, R. Lagrange, P. Reis, Wrinkling crystallography on
spherical surfaces, Proc. Natl. Acad. Sci. USA 122 (2015) 14-19.


http://refhub.elsevier.com/S0263-8231(21)00489-4/sb1
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb1
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb1
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb1
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb1
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb2
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb2
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb2
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb2
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb2
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb3
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb3
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb3
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb3
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb3
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb4
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb4
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb4
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb4
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb4
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb5
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb5
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb5
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb6
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb6
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb6
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb7
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb7
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb7
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb7
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb7
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb8
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb9
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb9
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb9
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb10
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb10
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb10
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb10
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb10
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb11
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb11
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb11
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb11
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb11
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb12
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb12
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb12
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb12
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb12
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb13
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb13
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb13
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb13
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb13
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb14
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb14
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb14
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb14
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb14
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb15
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb15
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb15
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb16
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb16
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb16
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb16
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb16
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb17
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb17
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb17
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb17
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb17
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb18
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb18
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb18
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb18
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb18
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb19
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb19
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb19
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb20
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb20
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb20
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb20
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb20
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb21
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb21
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb21
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb21
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb21
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb22
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb22
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb22
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb22
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb22
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb23
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb23
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb23
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb23
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb23
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb24
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb25
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb25
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb25
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb25
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb25
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb26
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb26
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb26
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb26
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb26
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb27
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb27
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb27
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb28
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb28
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb28
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb29
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb29
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb29
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb29
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb29
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb30
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb30
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb30
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb31
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb31
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb31
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb31
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb31
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb32
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb32
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb32
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb33
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb33
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb33
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb35
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb35
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb35
http://symech.fgg.uni-lj.si/
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb37
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb37
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb37
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb38
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb38
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb38
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb39
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb39
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb39
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb40
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb40
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb40
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb40
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb40
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb41
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb41
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb41
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb41
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb41
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb42
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb42
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb42
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb42
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb42
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb42
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb42
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb42
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb42
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb43
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb43
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb43
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb44
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb44
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb44
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb45
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb45
http://refhub.elsevier.com/S0263-8231(21)00489-4/sb45

	Discrete Kirchhoff–Love shell quadrilateral finite element designed from cubic Hermite edge curves and Coons surface patch
	Introduction
	Shell theory
	Kinematics
	Constitutive relations
	Equilibrium equations

	Edge curves for quadrilateral finite element
	Edge curves
	Nodal tangent vectors of the edge curves
	Continuity between the elements

	Coons patch between the edge curves
	Bilinear Coons patch
	Finite element interpolations
	Nodal values in current configuration

	Assumed natural strains and variational formulation
	ANS concept for membrane strains
	Potential energy, its variation and linearization

	Numerical examples
	Eigenvalues and eigenmodes 
	Patch tests
	Hemispherical shell: linear analysis
	Pinched cylinder: linear analysis
	Twisted beam: linear analysis
	L-shaped plate: linear analysis
	Hemispherical shell
	Cylindrical panel
	Twisted beam
	Helical beam
	Raasch's hook
	Hemisphere on elastic substrate

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix
	Solution of the curve functional
	Components of the covariant tangent basis vectors
	Interpolation functions

	References


