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Elastic materials with holes and inclusions are important in a large variety of contexts ranging from construc-
tion material to biological membranes. More recently, they have also been exploited in mechanical metamaterials,
where the geometry of highly deformable structures is responsible for their unusual properties, such as negative
Poisson’s ratio, mechanical cloaking, and tunable phononic band gaps. Understanding how such structures
deform in response to applied external loads is thus crucial for designing novel mechanical metamaterials. Here
we present a method for predicting the linear response of infinite 2D solid structures with circular holes and
inclusions by employing analogies with electrostatics. Just like an external electric field induces polarization
(dipoles, quadrupoles, and other multipoles) of conductive and dielectric objects, external stress induces elastic
multipoles inside holes and inclusions. Stresses generated by these induced elastic multipoles then lead to
interactions between holes and inclusions, which induce additional polarization and thus additional deformation
of holes and inclusions. We present a method that expands the induced polarization in a series of elastic
multipoles, which systematically takes into account the interactions of inclusions and holes with the external
stress field and also between them. The results of our method show good agreement with both linear finite
element simulations and experiments.
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I. INTRODUCTION

Elastic materials with holes and inclusions have been stud-
ied extensively in materials science. Typically, the goal is to
homogenize the microscale distribution of holes and inclu-
sions to obtain effective material properties on the macroscale
[1–4], where the detailed micropattern of deformations and
stresses is ignored. On the other hand, it has recently been
recognized that the microscale interactions between proteins
embedded in biological membranes can promote the assembly
of ordered protein structures [5–7] and can also facilitate
the entry of virus particles into cells [8]. Furthermore, in
mechanical metamaterials [9], the geometry, topology, and
contrasting elastic properties of different materials are ex-
ploited to achieve extraordinary functionalities, such as shape
morphing [10,11], mechanical cloaking [12–14], negative
Poisson’s ratio [15–19], negative thermal expansion [20,21],
effective negative swelling [22–24], and tunable phononic
band gaps [25–27]. At the heart of these functionalities are
deformation patterns of such materials with holes and inclu-
sions. Therefore, understanding how these structures deform
under applied external load is crucial for the design of novel
metamaterials.

*miha.brojan@fs.uni-lj.si
†andrej@princeton.edu

Linear deformations of infinite thin plates with circular
holes under external load have been studied extensively over
the years [28–32]. The solution for one hole can be easily
obtained using standard techniques [33] and the solution for
two holes can be constructed with conformal maps and com-
plex analysis [29]. Green demonstrated how to construct a
solution for infinite thin plates with any number of holes [28]
by expanding the Airy stress function around each hole in
terms of the Michell solution for biharmonic functions [34].
However, it remained unclear how this procedure could be
generalized to finite structures with boundaries.

Deformations of thin membranes with infinitely rigid in-
clusions have also received significant attention, especially
in the context of rigid proteins embedded in biological
membranes [6–8,35–42]. Several different approaches were
developed to study the elastic and entropic interactions be-
tween inclusions, such as multipole expansion [35], the
effective field theory approach [40,41], and homogenization
[8]. Even though these articles considered membrane bending,
the governing equation for the out-of-plane displacement is
also biharmonic to the lowest order. Hence these methods
could be adapted to investigate the in-plane deformations of
plates with rigid inclusions.

In two companion papers, we have generalized Green’s
method [28] by employing analogies with electrostatics to de-
scribe the linear response of a thin elastic plate (plane stress)
or an infinitely thick elastic matrix (plane strain) with embed-
ded cylindrical holes and inclusions, which can be treated as
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FIG. 1. Induction in electrostatics and elasticity. (a), (b) Induced polarization resulting from the charge (−, +) redistribution due to the
external electric field E0 of (a) a single and (b) multiple conducting spheres (yellow). The resultant electric field lines are shown in gray. (c),
(d) Induced quadrupoles resulting from the charge (−, +) redistribution due to external uniaxial compressive stress σ0 in (c) a single and
(d) multiple circular holes (white disks) embedded in an elastic matrix. Heat maps show the von Mises stress field, where yellow and dark
purple indicate regions of high and low von Mises stress, respectively.

a 2D problem with circular holes and inclusions. Just like a
polarized conductive object in an external electric field can
be described by an induced dipole [see Fig. 1(a)], a hole
deformed by the external load can be described by induced
elastic quadrupoles [see Fig. 1(c)]. Circular inclusions in the
elastic matrix under external load are analogous to dielectric
objects in an external electric field. When multiple conductive
objects are placed in an external electric field, the induced
polarizations generate additional electric fields, which lead
to further charge redistribution on the surface of conductive
objects [see Fig. 1(b)]. Similarly, induced quadrupoles in de-
formed holes generate additional stresses in the elastic matrix,
which lead to further deformations of holes [see Fig. 1(d)].
Note that the effect of the induced charge distributions outside
the conductive objects and inclusions can be interpreted as the
induced multipoles at their centers as is discussed in detail
below.

In this paper, we present a method to describe linear de-
formations of circular holes and inclusions embedded in an
infinite 2D elastic matrix under small external loads by sys-
tematically expanding induced polarization of each hole and
inclusion in terms of elastic multipoles that are related to
terms in the Michell solution for biharmonic functions [34].
Note that various multipole expansion techniques have previ-
ously been used to describe point defects, such as vacancies
and interstitials [43–45], dislocation defects in piezoelectric
composite materials [46–48], and dynamics of dislocation
loops [49]. However, most of these studies were limited to
the leading order in multipole expansion. Here we show that
as the maximum degree of elastic multipoles is increased, the
error decreases exponentially. Moreover, the results of this
method are shown to be in excellent agreement with linear
finite element simulations and experiments. In the companion
paper [50], we describe how this method can be generalized

to finite size structures by employing ideas of image charges,
which become important for holes and inclusions near bound-
aries.

The remaining part of the paper is organized as follows. In
Sec. II we review the analogy between electrostatics and 2D
linear elasticity and introduce important concepts borrowed
from electrostatics. In Sec. III we describe the method for
evaluating linear deformation of structures with holes and
inclusions under external load, which is compared with linear
finite element simulations and experiments. In Sec. IV we give
concluding remarks and comment on the extensions of this
method to the nonlinear deformation regime, which is also
important for the analysis of mechanical metamaterials.

II. ANALOGY BETWEEN ELECTROSTATICS
AND 2D LINEAR ELASTICITY

The analogy between electrostatics and 2D linear elas-
ticity can be recognized, when the governing equations are
formulated in terms of the electric potential U [51] and the
Airy stress function χ [33], respectively, which are summa-
rized in Table I. The measurable fields, namely the electric
field E and the stress tensor field σi j , are obtained by
taking spatial derivatives of these scalar functions as E =
−∇U and σi j = εikε jl

∂2χ

∂xk∂xl
, where εi j is the permutation

symbol (ε12 = −ε21 = 1, ε11 = ε22 = 0) and summation over
repeated indices is implied. The most compelling aspect of the
formulations in terms of scalar functions U and χ is that Fara-
day’s law in electrostatics (∇×E = 0) and the force balance
in elasticity

( ∂σi j

∂x j
= 0

)
are automatically satisfied. Moreover,

the governing equations for these scalar functions take sim-
ple forms. Equation �U = −ρe/εe describes the well-known
Gauss’s law, where ρe is the electric charge density and εe
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TABLE I. Comparison between equations in electrostatics and 2D linear elasticity. Note that in electrostatics E is the electric field, while
in elasticity E is the 2D Young’s modulus.

Electrostatics Elasticity

Scalar potentials U χ

Fields E = −∇U σi j = εikε jl
∂2χ

∂xk∂xl

Properties of scalar functions ∇×E = −∇×∇U = 0 ∂σi j

∂x j
= εikε jl

∂

∂x j

∂2χ

∂xk∂xl
= 0

Governing equations �U = −ρe/εe ��χ = Eρ

is the permittivity of the material. The analogous equation in
elasticity ��χ = Eρ describes the (in)compatibility condi-
tions [52,53], where E is the 2D Young’s modulus and ρ is
the elastic charge density associated with defects, which are
sources of incompatibility. Note that a strain field is said to be
compatible if it is continuous and its integral over any loop is
identically equal to zero [54]. This is, however, not the case for
the integrals of strain field over a loop around disclination and
dislocation defects [52,53]. Note also that in the absence of
electric charges (ρe = 0) the electric potential U is a harmonic
function, while in the absence of defects (ρ = 0) the Airy
stress function χ is a biharmonic function.

When a conductive object is placed in an external electric
field, it gets polarized due to the redistribution of charges
[see Fig. 1(a)]. This induced polarization generates an ad-
ditional electric field outside the conductive object, which
can be expanded in terms of fictitious multipoles (dipole,
quadrupole, and other multipoles) located at the center of
the conductive object [51]. Note that the induced polarization
does not include a monopole charge, because the total topo-
logical charge is conserved [51]. Similarly, a hole or inclusion
embedded in an elastic matrix gets polarized when the exter-
nal load is applied [see Fig. 1(c)]. The additional stresses in
the elastic matrix due to this induced polarization can again be
expanded in terms of fictitious elastic multipoles (quadrupoles
and other multipoles) located at the center of hole and inclu-
sion. In elasticity, the induced polarization does not include
disclinations (topological monopole) and dislocations (topo-
logical dipole), which are topological defects [52]. In order to
demonstrate this, we first briefly present the multipoles and
induction in electrostatics and describe the meaning of their
counterparts in elasticity.

A. Monopoles

In electrostatics, a topological monopole is defined as the
electric charge density distribution proportional to the Dirac
δ function, i.e., ρe = qδ(x − x0), where q is the charge and
x0 denotes its position. The electric potential Um(x − x0|q)
in two dimensions is then obtained by solving the governing
equation as [51]

�Um = − q

εe
δ(x − x0),

Um(x − x0|q) = − q

2πεe
ln |x − x0|. (1)

For the positive monopole charge, the electric field Em =
−∇Um is pointing radially outward [see Fig. 2(a)]. Note that
the total charge is topologically conserved [51].

Similarly, we can define a topological monopole in 2D
elasticity as the charge density proportional to the Dirac δ

function, i.e., ρ = sδ(x − x0), where s is the charge and x0

denotes its position. Topological monopoles are called discli-
nations and their Airy stress function χ s

m(x − x0|s) can be
obtained by solving the governing equation as [52,55]

��χ s
m = Esδ(x − x0),

χ s
m(x − x0|s) = Es

8π
|x − x0|2(ln |x − x0| − 1/2). (2)

The physical interpretation of topological monopoles in 2D
elasticity comes from condensed matter theory. When a wedge
with angle s is cut out from a 2D elastic material and the
newly created boundaries of the remaining material are glued
together, a positive disclination defect of charge s is formed
[see Fig. 2(b)]. The negative disclination with charge s < 0
corresponds to the insertion of a wedge with angle |s|. The
stresses generated by these operations are described with the
Airy stress function in Eq. (2) [52,55].

Unlike in electrostatics, we can also define a nontopo-
logical monopole in 2D elasticity as the charge density
proportional to ρ = p�0δ(x − x0), where p is the charge,
x0 denotes its position, and �0 corresponds to the Laplace
operator with respect to x0. The corresponding Airy stress
function χ

p
m(x − x0|p) can be obtained by solving the gov-

erning equation as [55]

��χ p
m = E p�0δ(x − x0),

χ p
m(x − x0|p) = E p

2π
[ln(|x − x0|) + 1/2]. (3)

Note that the Airy stress functions for the nontopological
monopole p and for the topological monopole s are related
via χ

p
m(x − x0|p) = �0χ

s
m(x − x0|p). The constant term in

Eq. (3) does not generate any stresses and can thus be
omitted. A positive (negative) nontopological monopole with
charge p > 0 (p < 0) is related to a local isotropic contraction
(expansion) of the material [see Fig. 2(c)] [55,56].

B. Dipoles

An electrostatic dipole is formed at x0 when two opposite
charges ±q are located at x± = x0 ± a/2 [see Fig. 2(d)]. The
electric potential for a dipole in two dimensions is thus

Ud (x − x0|p) = Um(x − x+|q) + Um(x − x−| − q),

Ud (x − x0|p)
|a|→0−−−→ p · (x − x0)

2πεe|x − x0|2 , (4)
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FIG. 2. Multipoles in electrostatics and 2D elasticity. (a) An electrostatic monopole with positive charge q (green) generates an outward
radial electric field (black lines). For a monopole with negative charge, the direction of the electric field is reversed. (b) In 2D elasticity a
disclination defect (topological monopole) with charge s forms upon removal (s > 0) or insertion (s < 0) of a wedge of material (red), where
|s| is the wedge angle. (c) In 2D elasticity, a nontopological monopole p > 0 (p < 0) corresponds to a local isotropic contraction (expansion)
of the material. (d) An electrostatic dipole p is formed when a positive (green) and a negative (red) charge of equal magnitude are brought
close together. The resulting electric field lines are shown with black lines. (e) In 2D elasticity, a dislocation (topological dipole) forms upon
removal or insertion of a semi-infinite strip of material of width |b| and is represented by the Burgers vector b. In a triangular lattice, the
dislocation corresponds to two adjacent disclinations of opposite charges. The two black lines indicate the positions of points before and after
the removal of a semi-infinite strip (red) from crystal. A dipole moment ds can be defined in the direction from negative to positive disclination
and its magnitude is equal to the distance between two disclinations times the magnitude of charge of each disclination. (f) In 2D elasticity, a
nontopological dipole dp is formed when a positive (green) and a negative (red) nontopological charge of equal magnitude are brought close
together. (g) An electrostatic quadrupole Q consisting of four charges at the vertices of a square with opposite charges at the adjacent vertices.
The resulting electric field lines are shown with black lines. (h) In 2D elasticity, a quadrupole Qs is represented by four disclinations at the
vertices of a square with opposite charges at the adjacent vertices. Due to the quadrupole Qs, material locally expands in the direction of
positive disclinations and locally contracts in the direction of negative disclinations, while the total area remains locally unchanged. (i) In 2D
elasticity, a quadrupole Qp is represented by four nontopological monopoles at the vertices of a square with opposite charges at the adjacent
vertices.

where we introduced the dipole moment p = qa [51]. Note
that in electrostatics dipoles and all higher-order multipoles
are nontopological [51].

Similarly, a dipole ds = sa in 2D elasticity is formed when
two disclination defects of opposite charges ±s are located at
x± = x0 ± a/2 [see Fig. 2(e)]. Dipoles are called dislocations
and their Airy stress function is [52]

χ s
d (x − x0|ds) = χ s

m(x − x+|s) + χ s
m(x − x−| − s),

χ s
d (x − x0|ds)

|a|→0−−−→ − E

4π
ds · (x − x0) ln |x − x0|. (5)

Dislocation is a topological defect, which forms upon removal
or insertion of a semi-infinite strip of material of width |b|
[see Fig. 2(e)]. Note that dislocations are conventionally rep-

resented by the Burgers vector b, which is equal to the dipole
moment ds rotated by 90◦, i.e., bi = εi jds

j [52,55].
In 2D elasticity, we can define another nontopological

dipole dp = pa, which is formed when two nontopological
monopoles of opposite charges ±p are located at x± = x0 ±
a/2 [see Fig. 2(f)]. Their Airy stress function is

χ
p
d (x − x0|dp) = χ p

m(x − x+|p) + χ p
m(x − x−| − p),

χ
p
d (x − x0|dp)

|a|→0−−−→ − E

2π

dp · (x − x0)

|x − x0|2 . (6)

C. Quadrupoles

An electrostatic quadrupole Q in two dimensions is formed
when two positive and negative charges are placed symmetri-
cally around x0, such that charges qi = q(−1)i are placed at
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positions xi = x0 + a( cos(θ + iπ/2), sin(θ + iπ/2)), where
i ∈ {0, 1, 2, 3} and angle θ describes the orientation of
quadrupole [see Fig. 2(g)]. The electric potential of the
quadrupole is thus

UQ(r, ϕ|Q, θ ) =
3∑

i=0

Um(x − xi|qi ),

UQ(r, ϕ|Q, θ )
a→0−−→ Q cos(2(ϕ − θ ))

πεer2
, (7)

where we introduced the quadrupole moment Q = qa2

and polar coordinates (r =
√

(x − x0)2 + (y − y0)2, ϕ =
arctan[(y − y0)/(x − x0)]) centered at x0.

Similarly, an elastic quadrupole Qs is formed when two
positive and negative disclinations are placed symmetrically
around x0, such that disclinations with charges si = s(−1)i

are placed at positions xi = x0 + a(cos(θ + iπ/2), sin(θ +
iπ/2)), where i ∈ {0, 1, 2, 3} and angle θ describes the orien-
tation of quadrupole [see Fig. 2(h)]. The Airy stress function
for quadrupole Qs in polar coordinates is thus

χ s
Q(r, ϕ|Qs, θ ) =

3∑
i=0

χ s
m(x − xi|si ),

χ s
Q(r, ϕ|Qs, θ )

a→0−−→ EQs cos(2(ϕ − θ ))

4π
, (8)

where we introduced the quadrupole moment Qs = sa2. The
elastic quadrupole Qs causes the material to locally expand in
the θ direction and locally contract in the orthogonal direction
[see Fig. 2(h)]. Note that the quadrupole Qs is nontopological
[55,56].

In elasticity, we can define another quadrupole Qp, which
is formed when two positive and negative nontopologi-
cal monopoles are placed symmetrically around x0, such
that nontopological charges pi = p(−1)i are placed at posi-
tions xi = x0 + a(cos(θ + iπ/2), sin(θ + iπ/2)), where i ∈
{0, 1, 2, 3} and angle θ describes the orientation of quadrupole
[see Fig. 2(i)]. The Airy stress function for quadrupole Qp in
polar coordinates is thus

χ
p
Q(r, ϕ|Qp, θ ) =

3∑
i=0

χ p
m(x − xi|pi ),

χ
p
Q(r, ϕ|Qp, θ )

a→0−−→ −EQp cos(2(ϕ − θ ))

πr2
, (9)

where we introduced the quadrupole moment Qp = pa2.

D. Higher-order multipoles

The procedure described in the previous sections can be
generalized to define higher-order multipoles Qs

n and Qp
n .

In 2D the quadrupole Qs is generalized by placing n pos-
itive and n negative disclinations symmetrically around x0,
such that disclinations of charges si = s(−1)i are placed at
positions xi = x0 + a(cos(θ + iπ/n), sin(θ + iπ/n)), where
i ∈ {0, 1, . . . , 2n − 1} and angle θ describes the orientation
of multipole. The Airy stress functions for such multipoles Qs

n

in polar coordinates are

χ s
n

(
r, ϕ

∣∣Qs
n, θ

) =
2n−1∑
i=0

χ s
m(x − xi|si ),

χ s
n

(
r, ϕ

∣∣Qs
n, θ

) a→0−−→ EQs
n cos(n(ϕ − θ ))

4(n − 1)πrn−2
, (10)

where we introduced the multipole moment Qs
n = san.

The quadrupole Qp is generalized to higher-order
multipoles by placing n positive and n negative
nontopological monopoles symmetrically around x0,
such that charges of strength pi = p(−1)i are placed at
positions xi = x0 + a(cos(θ + iπ/n), sin(θ + iπ/n)), where
i ∈ {0, 1, . . . , 2n − 1} and angle θ describes the orientation of
multipole. The Airy stress functions for such multipoles Qp

n

in polar coordinates are

χ p
n

(
r, ϕ

∣∣Qp
n, θ

) =
2n−1∑
i=0

χ p
m(x − xi|pi ),

χ p
n

(
r, ϕ

∣∣Qp
n, θ

) a→0−−→ −EQp
n cos(n(ϕ − θ ))

πrn
, (11)

where we introduced the multipole moment Qp
n = pan.

E. Multipoles vs. the Michell solution for biharmonic functions

The elastic multipoles of types s and p introduced in the
previous sections are closely related to the general solution
of the biharmonic equation ��χ = 0, due to Michell [34],
which is given in polar coordinates (r, ϕ) as

χ (r, ϕ) = A0r2 + B0r2 ln r + C0 ln r + Iϕ

+
(

A1r + B1

r
+ B′

1rϕ + C1r3 + D1r ln r

)
cos ϕ

+
(

E1r + F1

r
+ F ′

1rϕ + G1r3 + H1r ln r

)
sin ϕ

+
∞∑

n=2

(
Anrn + Bn

rn
+ Cnrn+2 + Dn

rn−2

)
cos(nϕ)

+
∞∑

n=2

(
Enrn + Fn

rn
+ Gnrn+2 + Hn

rn−2

)
sin(nϕ).

(12)

The Michell solution above contains the Airy stress functions
corresponding to multipoles located at the origin: discli-
nation (r2 ln r), dislocation (r ln r cos ϕ, r ln r sin ϕ), non-
topological monopole (ln r), nontopological dipole (cos ϕ/r,
sin ϕ/r), quadrupole Qs (cos(2ϕ), sin(2ϕ)), quadrupole Qp

(cos(2ϕ)/r2, sin(2ϕ)/r2), as well as all higher-order mul-
tipoles Qs

n and Qp
n [see Eqs. (10) and (11)]. Note that the

Michell solution also contains terms that increase faster than
r2 far away from the origin. These terms are associated with
stresses that increase away from the origin and can be in-
terpreted as multipoles located at infinity [57]. Due to the
connection with elastic multipoles we refer to coefficients
Ai, Bi, . . . , Hi in the Michell solution as the amplitudes of
multipoles.
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F. Induction

As mentioned previously, the external electric field induces
polarization in conducting and dielectric objects. Similarly,
external stress induces elastic quadrupoles inside holes and
inclusions. To make this analogy concrete, we first demon-
strate how external electric field in two dimensions polarizes
a single conductive or dielectric disk, and then discuss how
external stress induces quadrupoles inside a circular hole or
inclusion.

Let us consider a perfectly conductive disk of radius R in a
uniform external electric field (E = E0x̂) in two dimensions.
This electric field provides a driving force for mobile charges
on the disk, which are redistributed until the resulting tangen-
tial component of the total electric field at the circumference
of the disk is zero. This means that the electric potential is
constant on the circumference (r = R). Assuming that the
electric potential is zero on the circumference of the disk
and that the resultant electric field approaches the background
field far away from the disk, we can solve the governing
equation �U = 0 in polar coordinates to find that the electric
potential is U tot

in (r, ϕ) = 0 inside the conductive disk (r < R)
and that the electric potential U tot

out(r, ϕ) outside the conductive
disk (r > R) is given by [58]

U tot
out(r, ϕ) = −E0r cos ϕ + E0

R2

r
cos ϕ, (13)

where the origin of the coordinate system is at the center of
the conductive disk. The first term in Eq. (13) for the electric
potential U tot

out(r, ϕ) outside the conductive disk is due to the
external electric field and the second term can be interpreted
as the electric potential of an induced electrostatic dipole at
the center of the disk [see Eq. (4) and Fig. 1(a)]. This analysis
can be generalized to a dielectric disk with dielectric constant
εin that is embedded in a material with the dielectric constant
εout in a uniform external electric field (E = E0x̂). The electric
potentials inside and outside the disk are then given by [58]

U tot
in (r, ϕ) = −E0r cos ϕ + E0

(εin − εout)

(εin + εout)
r cos ϕ, (14a)

U tot
out(r, ϕ) = −E0r cos ϕ + E0

(εin − εout)

(εin + εout)

R2

r
cos ϕ. (14b)

The first terms in both U tot
in and U tot

out correspond to the external
electric field, whereas the second terms can be interpreted as
induced dipoles. The expression in Eq. (13) for the conductive
disk is recovered in the limit εin/εout → ∞. Note that the
resulting electric field inside the dielectric disk is uniform
Etot

in = −∇U tot
in = 2E0εout/(εin + εout)x̂.

Similarly, external stress induces multipoles in elastic
systems. For example, consider a circular hole of radius
R embedded in an infinite elastic matrix. Under exter-
nal stress σ ext

xx = −σ0, the resultant Airy stress function
is obtained by solving the governing equation ��χ = 0
with the traction-free boundary condition (σrr = σrϕ = 0)
at the circumference of the hole. The Airy stress func-
tion outside the hole (r > R) in polar coordinates is given

by [59]

χ tot
out(r, ϕ) = − σ0r2

4
[1 − cos(2ϕ)] + σ0R2

2
ln r

− σ0R2

2
cos(2ϕ) + σ0R4

4r2
cos(2ϕ). (15)

The above equation for the Airy stress function reveals that
the external stress induces a nontopological monopole p
[Eq. (3)], and quadrupoles Qs and Qp [Eqs. (8) and (9)] at
the center of the hole [see Fig. 1(c)]. Note that unlike in
electrostatics, dipoles ds are not induced in elasticity. This
is because isolated disclinations (topological monopoles) and
dislocations (topological dipoles) are formed by insertion or
removal of material, which makes them topological defects
[52]. On the other hand, elastic nontopological monopole p
and quadrupoles Qs and Qp can be obtained by local material
rearrangement and can thus be induced by external loads
[55,56].

The above analysis can be generalized to the case with a
circular inclusion of radius R made from material with the
Young’s modulus Ein and the Poisson’s ratio νin that is em-
bedded in an infinite elastic matrix made from material with
the Young’s modulus Eout and the Poisson’s ratio νout. Under
uniaxial compressive stress σ ext

xx = −σ0, the Airy stress func-
tion corresponding to the external stress is χext = −σ0y2/2 =
−σ0r2[1 − cos(2ϕ)]/4. Since the Airy stress function due
to external stress contains both the axisymmetric and the
cos(2ϕ) term, the Airy stress function due to induced multi-
poles should have the same angular dependence. Furthermore
stresses should remain finite at the center of the inclusion
(r = 0) and also far away from the inclusion (r → ∞). The to-
tal Airy stress function χ tot

in (r, ϕ) inside (r < R) and χ tot
out(r, ϕ)

outside (r > R) the inclusion can thus be written in the fol-
lowing form:

χ tot
in (r, ϕ) = −σ0r2

4
[1 − cos(2ϕ)] + c0r2

+ a2r2 cos(2ϕ) + c2
r4

R2
cos(2ϕ), (16a)

χ tot
out(r, ϕ) = −σ0r2

4
[1 − cos(2ϕ)] + A0R2 ln

(
r

R

)

+C2R2 cos(2ϕ) + A2R4r−2 cos(2ϕ). (16b)

The last three terms in Eq. (16b) correspond to the induced
nontopological monopole p and quadrupoles Qs and Qp at
the center of the inclusion, similar to induced multipoles at
the center of the hole in Eq. (15). The last three terms in
Eq. (16a) can also be interpreted as induced multipoles that are
located far away from the inclusion. The unknown coefficients
are determined from the boundary conditions, which require
that tractions (σrr and σrϕ) and displacements (ur and uϕ)
are continuous at the circumference of the inclusion (r = R).
Stresses corresponding to the Airy stress function χ (r, ϕ) can
be calculated as σrr = r−1(∂χ/∂r) + r−2(∂2χ/∂ϕ2), σϕϕ =
∂2χ/∂r2, and σrϕ = −∂ (r−1∂χ/∂ϕ)/∂r. Table II summarizes
the stresses corresponding to different terms in the Michell
solution [33]. The boundary conditions for tractions at the
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TABLE II. Stresses σi j and displacements ui corresponding to different terms for the Airy stress function χ [see Eq. (12)] in the Michell
solution [33]. The value of Kolosov’s constant for plane stress is κ = (3 − ν )/(1 + ν ) and for plane strain is κ = 3 − 4ν. Here, μ is the shear
modulus and ν is the Poisson’s ratio.

χ σrr σrϕ σϕϕ 2μ

(
ur

uϕ

)

r2 2 0 2 r

(
κ − 1

0

)

ln r r−2 0 −r−2 r−1

(−1
0

)

rn+2 cos(nϕ) −(n + 1)(n − 2)rn cos(nϕ) n(n + 1)rn sin(nϕ) (n + 1)(n + 2)rn cos(nϕ) rn+1

(
(κ − n − 1) cos(nϕ)
(κ + n + 1) sin(nϕ)

)

rn+2 sin(nϕ) −(n + 1)(n − 2)rn sin(nϕ) −n(n + 1)rn cos(nϕ) (n + 1)(n + 2)rn sin(nϕ) rn+1

(
(κ − n − 1) sin(nϕ)

−(κ + n + 1) cos(nϕ)

)

r−n+2 cos(nϕ) −(n + 2)(n − 1)r−n cos(nϕ) −n(n − 1)r−n sin(nϕ) (n − 1)(n − 2)r−n cos(nϕ) r−n+1

(
(κ + n − 1) cos(nϕ)

−(κ − n + 1) sin(nϕ)

)

r−n+2 sin(nϕ) −(n + 2)(n − 1)r−n sin(nϕ) n(n − 1)r−n cos(nϕ) (n − 1)(n − 2)r−n sin(nϕ) r−n+1

(
(κ + n − 1) sin(nϕ)
(κ − n + 1) cos(nϕ)

)

rn cos(nϕ) −n(n − 1)rn−2 cos(nϕ) n(n − 1)rn−2 sin(nϕ) n(n − 1)rn−2 cos(nϕ) rn−1

(−n cos(nϕ)
n sin(nϕ)

)

rn sin(nϕ) −n(n − 1)rn−2 sin(nϕ) −n(n − 1)rn−2 cos(nϕ) n(n − 1)rn−2 sin(nϕ) rn−1

(−n sin(nϕ)
−n cos(nϕ)

)

r−n cos(nϕ) −n(n + 1)r−n−2 cos(nϕ) −n(n + 1)r−n−2 sin(nϕ) n(n + 1)r−n−2 cos(nϕ) r−n−1

(
n cos(nϕ)
n sin(nϕ)

)

r−n sin(nϕ) −n(n + 1)r−n−2 sin(nϕ) n(n + 1)r−n−2 cos(nϕ) n(n + 1)r−n−2 sin(nϕ) r−n−1

(
n sin(nϕ)

−n cos(nϕ)

)

circumference of inclusion are thus σ tot
in,rr = σ tot

out,rr and
σ tot

in,rϕ = σ tot
out,rϕ , where

σ tot
in,rr = −σ0

2
+ 2c0 −

(
σ0

2
+ 2a2

)
cos(2ϕ), (17a)

σ tot
out,rr = −σ0

2
+ A0 −

(
σ0

2
+ 4C2 + 6A2

)
cos(2ϕ), (17b)

σ tot
in,rϕ =

(
σ0

2
+ 2a2 + 6c2

)
sin(2ϕ), (17c)

σ tot
out,rϕ =

(
σ0

2
− 2C2 − 6A2

)
sin(2ϕ). (17d)

In order to obtain displacements, we first calculate the strains
εrr = [(κ + 1)σrr − (3 − κ )σϕϕ]/(8μ), εrϕ = σrϕ/(2μ),
and εϕϕ = [(κ + 1)σϕϕ − (3 − κ )σrr]/(8μ), where
μ = E/[2(1 + ν)] is the shear modulus and we introduced the
Kolosov’s constant κ = (3 − ν)/(1 + ν) for plane stress and
κ = 3 − 4ν for plane strain condition [33]. Displacements ur

and uϕ are then obtained by integrating the strains. Table II
summarizes the displacements corresponding to different
terms in the Michell solution [33]. The boundary conditions
for displacements at the circumference of inclusion are thus
utot

in,r = utot
out,r and utot

in,ϕ = utot
out,ϕ , where

utot
in,r =

(
−σ0

4
+ c0

)
R(κin − 1)

2μin

+
[
−σ0

2
− 2a2 + c2(κin − 3)

]
R cos(2ϕ)

2μin
, (18a)

utot
out,r = − R

2μout

[
1

4
σ0(κout − 1) + A0

]

+
[
−σ0

2
+ C2(κout + 1) + 2A2

]
R cos(2ϕ)

2μout
, (18b)

utot
in,ϕ =

[
σ0

2
+ 2a2 + c2(κin + 3)

]
R sin(2ϕ)

2μin
, (18c)

utot
out,ϕ =

[
σ0

2
− C2(κout − 1) + 2A2

]
R sin(2ϕ)

2μout
. (18d)

The boundary conditions in Eqs. (17) and (18) have to be sat-
isfied at every point (ϕ) on the circumference of the inclusion.
Thus the coefficients of the Fourier components have to match
on both sides of these equations, which allows us to rewrite the
boundary conditions as a matrix equation(

Mtrac
out , Mtrac

in

Mdisp
out , Mdisp

in

)(
aout

ain

)
=

(
0

bdisp

)
. (19)

The top and bottom rows of the matrix in the above equa-
tion are obtained from the boundary conditions for tractions
(superscript “trac”) and displacements (superscript “disp”),
respectively, where

Mtrac
out =

⎛
⎝1 0 0

0 −6 −4
0 −6 −2

⎞
⎠, (20a)

Mtrac
in =

⎛
⎝−2 0 0

0 2 0
0 −2 −6

⎞
⎠, (20b)
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Mdisp
out =

⎛
⎜⎜⎝

− R
2μout

0 0

0 R
μout

R(κout+1)
2μout

0 R
μout

−R(κout−1)
2μout

⎞
⎟⎟⎠, (20c)

Mdisp
in =

⎛
⎜⎜⎝

−R(κin−1)
2μin

0 0

0 R
μin

−R(κin−3)
2μin

0 − R
μin

−R(κin+3)
2μin

⎞
⎟⎟⎠. (20d)

The left and right columns of the matrix in Eq. (19) describe
the effect of the induced multipoles aout outside and ain inside
the inclusion, respectively, where

aout =
⎛
⎝A0

A2

C2

⎞
⎠, ain =

⎛
⎝c0

a2

c2

⎞
⎠. (21)

The right-hand side of the Eq. (19) describes the effect of
external load as

bdisp =

⎛
⎜⎜⎝

σ0R
8

( (κout−1)
μout

− (κin−1)
μin

)
σ0R

4

(
1

μout
− 1

μin

)
σ0R

4

(− 1
μout

+ 1
μin

)
⎞
⎟⎟⎠. (22)

By solving the set of equations in Eq. (19) we find that the
Airy stress functions χ tot

in (r, ϕ) inside (r < R) and χ tot
out(r, ϕ)

outside (r > R) the inclusion are given by

χ tot
in (r, ϕ) = −σ0r2

4
[1 − cos(2ϕ)]

+ [μout(κin − 1) − μin(κout − 1)]

4[μout(κin − 1) + 2μin]
σ0r2

− (μout − μin )

4(μout + μinκout)
σ0r2 cos(2ϕ), (23a)

χ tot
out(r, ϕ) = −σ0r2

4
[1 − cos(2ϕ)]

+ [μout(κin − 1) − μin(κout − 1)]

2[μout(κin − 1) + 2μin]
σ0R2 ln r

− (μout − μin )

2(μout + μinκout)
σ0R2 cos(2ϕ)

+ (μout − μin )

4(μout + μinκout)
σ0R4r−2 cos(2ϕ). (23b)

In Eq. (23) for the Airy stress functions the last three terms
can again be interpreted as induced nontopological monopole
p and quadrupoles Qs and Qp. The expression in Eq. (15) for
the hole is recovered in the limit μin → 0. Note that similar
to the Eshelby inclusions in 3D [1], the stress field inside the
inclusion in two dimensions is uniform and is given by

σ in
xx = −σ0

μin(1 + κout)[μoutκin + μin(2 + κout)]

2[μout(κin − 1) + 2μin](μout + μinκout)
, (24a)

σ in
yy = σ0

μin(1 + κout)[μout(κin − 2) − μin(κout − 2)]

2[μout(κin − 1) + 2μin](μout + μinκout)
, (24b)

σ in
xy = 0. (24c)

By comparing the above analyses in elasticity and electro-
statics, we conclude that holes and inclusions in elasticity are

analogous to perfect conductors and dielectrics in electrostat-
ics, respectively.

The problem of induction becomes much more involved
when multiple dielectric objects are considered in electro-
statics or multiple inclusions in elasticity. This is because
dielectric objects and inclusions interact with each other via
induced electric fields and stress fields, respectively. In the
next section, we describe how such interactions can be sys-
tematically taken into account in elasticity, which enabled
us to calculate the magnitudes of induced multipoles in the
presence of external load.

III. ELASTIC MULTIPOLE METHOD

Building on the concepts described above, we have de-
veloped a method for calculating the linear deformation of
circular inclusions and holes embedded in an infinite elastic
matrix under external stress. External stress induces elastic
multipoles at the centers of inclusions and holes, and their am-
plitudes are obtained from the boundary conditions between
different materials (continuity of tractions and displacements).
In the following Sec. III A, we describe the method for the
general case where circular inclusions can have different
sizes and material properties (holes correspond to zero shear
modulus). Note that our method applies to the deformation
of cylindrical holes and inclusions embedded in thin plates
(plane stress) as well as to cylindrical holes and inclusions
embedded in an infinitely thick elastic matrix (plane strain) by
appropriately setting the values of the Kolosov’s constant. In
Sec. III B we compare the results of our method to the finite
element simulations, and in Sec. III C they are compared to
experiments.

A. Method

Let us consider a 2D infinite elastic matrix with the
Young’s modulus E0 and the Poisson’s ratio ν0. Embedded in
the matrix are N circular inclusions with radii Ri centered at
positions xi = (xi, yi ) with Young’s moduli Ei and Poisson’s
ratios νi, where i ∈ {1, . . . , N}. Holes are described with zero
Young’s modulus (Ei = 0). External stress, represented with
the Airy stress function

χext(x, y) = 1
2σ ext

xx y2 + 1
2σ ext

yy x2 − σ ext
xy xy, (25)

induces nontopological monopoles (p), nontopological
dipoles (dp), quadrupoles (Qs, Qp), and higher-order
multipoles (Qs

n, Qp
n) at the centers of inclusions, as was

discussed in Sec. II F. Thus the Airy stress function outside
the ith inclusion due to the induced multipoles can be
expanded as

χout(ri, ϕi|ai,out ) = Ai,0R2
i ln

(
ri

Ri

)

+
∞∑

n=1

R2
i

(
ri

Ri

)−n

[Ai,n cos(nϕi ) + Bi,n sin(nϕi )]

+
∞∑

n=2

R2
i

(
ri

Ri

)−n+2

[Ci,n cos(nϕi ) + Di,n sin(nϕi)], (26)

where the origin of polar coordinates (ri =√
(x − xi )2 + (y − yi )2, ϕi = arctan[(y − yi )/(x − xi )]) is at
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the center xi of the ith inclusion and ai,out = {Ai,0,

Ai,1, . . . , Bi,1, Bi,2, . . . ,Ci,2,Ci,3, . . . , Di,2, Di,3, . . . } is the
set of amplitudes of induced multipoles. The total Airy stress
function outside all inclusions can then be written as

χ tot
out(x, y|aout ) = χext(x, y)

+
N∑

i=1

χout(ri(x, y), ϕi(x, y)|ai,out), (27)

where the first term is due to external stress and the summation
describes contributions due to induced multipoles at the cen-
ters of inclusions. The set of amplitudes of induced multipoles
for all inclusions is defined as aout = {a1,out, . . . , aN,out}.

Similarly, we expand the induced Airy stress function in-
side the ith inclusion as

χin(ri, ϕi|ai,in) = ci,0r2
i

+
∞∑

n=2

R2
i

(
ri

Ri

)n

[ai,n cos(nϕi ) + bi,n sin(nϕi )]

+
∞∑

n=1

R2
i

(
ri

Ri

)n+2

[ci,n cos(nϕi ) + di,n sin(nϕi )], (28)

where we kept only the terms that generate finite stresses at
the center of inclusion and omitted constant and linear terms
{1, ri cos ϕi, ri sin ϕi} that correspond to zero stresses. The set
of amplitudes of induced multipoles is represented as ai,in =
{ai,2, ai,3, . . . , bi,2, bi,3, . . . , ci,0, ci,1, . . . , di,1, di,2, . . . }. The
total Airy stress function inside the ith inclusion is thus

χ tot
in (x, y|ai,in ) = χext(x, y)

+ χin(ri(x, y), ϕi(x, y)|ai,in), (29)

where the first term is due to external stress and the second
term is due to induced multipoles.

The amplitudes of induced multipoles ai,out and ai,in are
obtained by satisfying the boundary conditions that tractions
and displacements are continuous across the circumference of
each inclusion

σ tot
in,rr (ri = Ri, ϕi|ai,in) = σ tot

out,rr (ri = Ri, ϕi|aout), (30a)

σ tot
in,rϕ (ri = Ri, ϕi|ai,in) = σ tot

out,rϕ (ri = Ri, ϕi|aout), (30b)

utot
in,r (ri = Ri, ϕi|ai,in) = utot

out,r (ri = Ri, ϕi|aout), (30c)

utot
in,ϕ (ri = Ri, ϕi|ai,in) = utot

out,ϕ (ri = Ri, ϕi|aout), (30d)

where stresses and displacements are obtained from the total
Airy stress functions χ tot

in (x, y|ai,in ) inside the ith inclusion
[see Eq. (29)] and χ tot

out(x, y|aout ) outside all inclusions [see
Eq. (27)]. In the boundary conditions for the ith inclusion in
Eq. (30), we can easily take into account contributions due
to the induced multipoles ai,in and ai,out in this inclusion and
due to external stresses σ ext

xx , σ ext
yy , and σ ext

xy after rewriting the

FIG. 3. Illustration of external load (σ ext
xx , σ ext

yy , σ ext
xy ) and polar

coordinates (ri, ϕi) and (r j, ϕ j) relative to the centers xi of the ith in-
clusion (orange disk) with radius Ri and x j of the jth inclusion (blue
disk) with radius Rj , respectively. Here, ai j is the separation distance
between the ith and jth inclusion and θi j is the angle between the line
joining their centers and the x-axis.

corresponding Airy stress function χext(x, y) in Eq. (25) in
polar coordinates centered at the ith inclusion as

χext(ri, ϕi ) = 1
4

(
σ ext

xx + σ ext
yy

)
r2

i − 1
4

(
σ ext

xx − σ ext
yy

)
r2

i cos(2ϕi )

− 1
2σ ext

xy r2
i sin(2ϕi ). (31)

Contributions to stresses and displacements in the bound-
ary conditions for the ith inclusion in Eq. (30) due to the
Airy stress functions χin(ri, ϕi|ai,in ), χout(ri, ϕi|ai,out ), and
χext(ri, ϕi ) can be taken into account with the help of Table II.
However, it is not straightforward to consider the contribu-
tions due to the induced multipoles a j,out for other inclusions
( j �= i), because the corresponding Airy stress functions
χout(r j, ϕ j |a j,out ) in Eq. (26) are written in the polar coordi-
nates centered at x j . The polar coordinates (r j, ϕ j ) centered
at the jth inclusion can be expressed in terms of polar coordi-
nates (ri, ϕi ) centered at the ith inclusion as

r j (ri, ϕi ) =
√

r2
i + a2

i j − 2riai j cos(ϕi − θi j ),

ϕ j (ri, ϕi ) = π + θi j − arctan

{
ri sin(ϕi − θi j )

[ai j − ri cos(ϕi − θi j )]

}
,

(32)

where ai j = √
(xi − x j )2 + (yi − y j )2 is the distance between

the centers of the ith and jth inclusion and θi j = arctan[(y j −
yi )/(x j − xi )] is the angle between the line joining the centers
of inclusions and the x-axis, as shown in Fig. 3.

The Airy stress function due to the induced multipoles
centered at the jth inclusion can be expanded in Taylor series
around the center of the ith inclusion as [28]

χout(r j (ri, ϕi ), ϕ j (ri, ϕi )|aj,out ) =
∞∑

n=2

R2
j

rn
i

an
i j

[
cos(nϕi ) f n

c (Rj/ai j, θi j |a j,out ) + sin(nϕi ) f n
s (Rj/ai j, θi j |a j,out )

]

+
∞∑

n=0

R2
j

rn+2
i

an+2
i j

[
cos(nϕi)g

n
c(Rj/ai j, θi j |a j,out ) + sin(nϕi )g

n
s (Rj/ai j, θi j |a j,out )

]
, (33)
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TABLE III. Coefficients for the expansion of the Airy stress function χout(r j (ri, ϕi ), ϕ j (ri, ϕi )|aj,out ) in Eqs. (33) and (34).

n � 2 A0
n(θi j ) = − 1

n cos(nθi j ) B0
n (θi j ) = − 1

n sin(nθi j )

n � 2, m � 1 Am
n (θi j ) = (−1)m

(m+n−1
n

)
cos [(m + n)θi j] Bm

n (θi j ) = (−1)m
(m+n−1

n

)
sin [(m + n)θi j]

n � 0, m � 2 Cm
n (θi j ) = (−1)m

(m+n−2
n

)
cos [(m + n)θi j] Dm

n (θi j ) = (−1)m
(m+n−2

n

)
sin [(m + n)θi j]

n � 0, m � 2 Em
n (θi j ) = (−1)m−1

(m+n−1
n+1

)
cos [(m + n)θi j] Fm

n (θi j ) = (−1)m−1
(m+n−1

n+1

)
sin [(m + n)θi j]

where we omitted constant and linear terms {1, ri cos ϕi, ri sin ϕi} that correspond to zero stresses and we introduced functions

f n
c (Rj/ai j, θi j |a j,out ) =

∞∑
m=0

{
Rm

j

am
i j

[
Aj,mAm

n (θi j ) + Bj,mBm
n (θi j )

] + Rm−2
j

am−2
i j

[
Cj,mCm

n (θi j ) + Dj,mDm
n (θi j )

]}
, (34a)

f n
s (Rj/ai j, θi j |a j,out ) =

∞∑
m=0

{
Rm

j

am
i j

[
Aj,mBm

n (θi j ) − Bj,mAm
n (θi j )

] + Rm−2
j

am−2
i j

[
Cj,mDm

n (θi j ) − Dj,mCm
n (θi j )

]}
, (34b)

gn
c(Rj/ai j, θi j |a j,out ) =

∞∑
m=2

Rm−2
j

am−2
i j

[
Cj,mEm

n (θi j ) + Dj,mFm
n (θi j )

]
, (34c)

gn
s (Rj/ai j, θi j |a j,out ) =

∞∑
m=2

Rm−2
j

am−2
i j

[
Cj,mFm

n (θi j ) − Dj,mEm
n (θi j )

]
. (34d)

In Eq. (34), we set Bj,0 = Cj,0 = Dj,0 = Cj,1 = Dj,1 = 0 and introduced coefficients Am
n (θi j ), Bm

n (θi j ), Cm
n (θi j ), Dm

n (θi j ),
Em

n (θi j ), and Fm
n (θi j ) that are summarized in Table III.

Next, we calculate stresses and displacements at the circumference of the ith inclusion by using expressions for the Airy stress
functions χext(ri, ϕi ) in Eq. (31) due to external stresses, χin(ri, ϕi|ai,in ) and χout(ri, ϕi|ai,out ) in Eqs. (28) and (26) due to induced
multipoles for the ith inclusion, and χout(r j, ϕ j |a j,out ) in Eq. (33) due to the induced multipoles for the jth inclusion ( j �= i).
With the help of Table II, which shows how to convert each term of the Airy stress function to stresses and displacements, we
obtain

σ tot
in,rr (ri = Ri, ϕi|ai,in) = 1

2

(
σ ext

xx + σ ext
yy

) + 1

2
(σ ext

xx − σ ext
yy ) cos(2ϕi ) + σ ext

xy sin(2ϕi ) + 2ci,0

−
∞∑

n=1

{n(n − 1)[ai,n cos(nϕi ) + bi,n sin(nϕi )] + (n + 1)(n − 2)[ci,n cos(nϕi ) + di,n sin(nϕi )]},

(35a)

σ tot
out,rr (ri = Ri, ϕi|aout) = 1

2

(
σ ext

xx + σ ext
yy

) + 1

2

(
σ ext

xx − σ ext
yy

)
cos(2ϕi ) + σ ext

xy sin(2ϕi ) + Ai,0

−
∞∑

n=1

{n(n + 1)[Ai,n cos(nϕi ) + Bi,n sin(nϕi )] + (n + 2)(n − 1)[Ci,n cos(nϕi ) + Di,n sin(nϕi )]}

−
∑
j �=i

∞∑
n=2

R2
j R

n−2
i

an
i j

n(n − 1)
[

cos(nϕi ) f n
c (Rj/ai j, θi j |a j,out ) + sin(nϕi ) f n

s (Rj/ai j, θi j |a j,out )
]

−
∑
j �=i

∞∑
n=0

R2
j R

n
i

an+2
i j

(n + 1)(n − 2)
[

cos(nϕi )g
n
c(Rj/ai j, θi j |a j,out ) + sin(nϕi )g

n
s (Rj/ai j, θi j |a j,out )

]
,

(35b)

σ tot
in,rϕ (ri = Ri, ϕi|ai,in) = −1

2

(
σ ext

xx − σ ext
yy

)
sin(2ϕi ) + σ ext

xy cos(2ϕi )

+
∞∑

n=1

{n(n − 1)[ai,n sin(nϕi) − bi,n cos(nϕi )] + n(n + 1)[ci,n sin(nϕi ) − di,n cos(nϕi)]}, (35c)

σ tot
out,rϕ (ri = Ri, ϕi|aout) = −1

2

(
σ ext

xx − σ ext
yy

)
sin(2ϕi ) + σ ext

xy cos(2ϕi )

−
∞∑

n=1

{n(n + 1)[Ai,n sin(nϕi ) − Bi,n cos(nϕi )] + n(n − 1)[Ci,n sin(nϕi ) − Di,n cos(nϕi )]}
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+
∑
j �=i

∞∑
n=2

R2
j R

n−2
i

an
i j

n(n − 1)
[

sin(nϕi ) f n
c (Rj/ai j, θi j |a j,out ) − cos(nϕi) f n

s (Rj/ai j, θi j |a j,out )
]

+
∑
j �=i

∞∑
n=0

R2
j R

n
i

an+2
i j

n(n + 1)
[

sin(nϕi)g
n
c(Rj/ai j, θi j |a j,out ) − cos(nϕi)g

n
s (Rj/ai j, θi j |a j,out )

]
, (35d)

2μi

Ri
utot

in,r (ri = Ri, ϕi|ai,in ) = −1

4

(
σ ext

xx + σ ext
yy

)
(1 − κi ) + 1

2

(
σ ext

xx − σ ext
yy

)
cos(2ϕi ) + σ ext

xy sin(2ϕi ) + ci,0(κi − 1)

−
∞∑

n=1

{n[ai,n cos(nϕi ) + bi,n sin(nϕi )] + (n + 1 − κi )[ci,n cos(nϕi) + di,n sin(nϕi )]}, (35e)

2μ0

Ri
utot

out,r (ri = Ri, ϕi|aout) = −1

4

(
σ ext

xx + σ ext
yy

)
(1 − κ0) + 1

2

(
σ ext

xx − σ ext
yy

)
cos(2ϕi ) + σ ext

xy sin(2ϕi)−Ai,0

+
∞∑

n=1

{n[Ai,n cos(nϕi ) + Bi,n sin(nϕi )] + (n − 1 + κ0)[Ci,n cos(nϕi) + Di,n sin(nϕi)]}

−
∑
j �=i

∞∑
n=2

R2
j R

n−2
i

an
i j

n
[

cos(nϕi ) f n
c (Rj/ai j, θi j |a j,out ) + sin(nϕi ) f n

s (Rj/ai j, θi j |a j,out )
]

−
∑
j �=i

∞∑
n=0

R2
j R

n
i

an+2
i j

(n + 1 − κ0)
[

cos(nϕi )g
n
c(Rj/ai j, θi j |a j,out ) + sin(nϕi )g

n
s (Rj/ai j, θi j |a j,out )

]
,

(35f)
2μi

Ri
utot

in,ϕ (ri = Ri, ϕi|ai,in ) = −1

2

(
σ ext

xx − σ ext
yy

)
sin(2ϕi ) + σ ext

xy cos(2ϕi )

+
∞∑

n=1

{n[ai,n sin(nϕi ) − bi,n cos(nϕi )] + (n + 1 + κi )[ci,n sin(nϕi) − di,n cos(nϕi )]}, (35g)

2μ0

Ri
utot

out,ϕ (ri = Ri, ϕi|aout) = −1

2

(
σ ext

xx − σ ext
yy

)
sin(2ϕi ) + σ ext

xy cos(2ϕi )

+
∞∑

n=1

[n(Ai,n sin(nϕi ) − Bi,n cos(nϕi)) + (n − 1 − κ0)(Ci,n sin(nϕi ) − Di,n cos(nϕi ))]

+
∑
j �=i

∞∑
n=2

R2
j R

n−2
i

an
i j

n
[

sin(nϕi ) f n
c (Rj/ai j, θi j |a j,out ) − cos(nϕi ) f n

s (Rj/ai j, θi j |a j,out )
]

+
∑
j �=i

∞∑
n=0

R2
j R

n
i

an+2
i j

(n + 1 + κ0)[sin(nϕi )g
n
c(Rj/ai j, θi j |a j,out ) − cos(nϕi )g

n
s (Rj/ai j, θi j |a j,out )].

(35h)

In the above equations, terms with coefficients σ ext
xx , σ ext

yy ,
and σ ext

xy correspond to χext(ri, ϕi ), terms with coefficients
ai,n, bi,n, ci,n, di,n correspond to χin(ri, ϕi|ai,in), terms with
coefficients Ai,n, Bi,n, Ci,n, Di,n correspond to χout(ri, ϕi|ai,out ),
and terms with functions f n

c , f n
s , gn

c, gn
s correspond to

χout(r j, ϕ j |a j,out ). We introduced the shear modulus μi = Ei/

[2(1 + νi )] and the Kolosov’s constant κi for the ith inclu-
sion, where the value of Kolosov’s constant is κi = (3 − νi )/
(1 + νi ) for plane stress and κi = 3 − 4νi for plane strain
conditions [33]. Similarly, we define the shear modulus μ0 =
E0/[2(1 + ν0)] and the Kolosov’s constant κ0 for the elas-
tic matrix. The boundary conditions in Eq. (30) have to
be satisfied at every point (ϕi) on the circumference of the
ith inclusion. Thus the coefficients of the Fourier modes
{1, cos(nϕi ), sin(nϕi )} have to match in the expansions of trac-

tions and displacements in Eq. (35), similar to what was done
for the case with the single inclusion in Sec. II F. This enables
us to construct a matrix equation for the set of amplitudes
{ai,out, ai,in} of induced multipoles in the form (see also Fig. 4)(

Mtrac
out,i j, Mtrac

in,i j

Mdisp
out,i j, Mdisp

in,i j

)(
a j,out

a j,in

)
=

(
0

bdisp
i

)
, (36)

where the summation over inclusions j is implied.
The top and bottom rows of the matrix M in the above

equation are obtained from the boundary conditions in
Eq. (30) for tractions (superscript “trac”) and displacements
(superscript “disp”), respectively. The left and right columns
of the matrix M describe the effect of the induced multipoles
a j,out and a j,in, respectively. The entries in matrices Mtrac

out,ii
and Mtrac

in,ii for the ith inclusion are numbers that depend on
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FIG. 4. Structure of the system of Eqs. (36) for the amplitudes ai,out and ai,in of the induced multipoles for inclusions i ∈ {1, . . . , N}.
The matrix M is divided into 4N2 blocks, where the blocks Mtrac

out,i j and Mtrac
in,i j correspond to the boundary conditions for tractions around

the circumference of the ith inclusion in Eqs. (30a) and (30b), and the blocks Mdisp
out,i j and Mdisp

in,i j correspond to the boundary conditions for
displacements around the circumference of the ith inclusion in Eqs. (30c) and (30d). The red boxes mark the blocks with i �= j that account
for the interactions between different inclusions. The effect of external stresses is contained in vectors bdisp

i . See text for detailed description of
elements represented in this system of equations.

the degrees of induced multipoles. The entries in matrices
Mdisp

out,ii and Mdisp
in,ii for the ith inclusion depend on the degrees of

induced multipoles, the radius of inclusion Ri and the material
properties of the inclusion (μi, κi) and elastic matrix (μ0, κ0).
Matrices Mtrac

out,i j and Mdisp
out,i j encode interactions between the

inclusions i and j. The entries in these matrices depend on the
degrees of induced multipoles, the radii Ri and Rj of inclu-
sions, the angle θi j , and the separation distance ai j between the
inclusions (see Fig. 3). In addition to that, the entries in matrix
Mdisp

out,i j also depend on the material properties of the elastic
matrix (μ0, κ0). Note that the other matrices are zero, i.e.,
Mtrac

in,i j = Mdisp
in,i j = 0. The entries in vector bdisp

i depend on the
magnitude of external stresses (σ ext

xx , σ ext
yy , σ ext

xy ), the degrees of
induced multipoles, the radius of inclusion Ri, and the material
properties of the inclusion (μi, κi) and elastic matrix (μ0, κ0).
Note that in bdisp

i the only nonzero entries are the ones that
correspond to Fourier modes 1, cos(2ϕi ), and sin(2ϕi ).

To numerically solve the system of equations for
induced multipoles in Eq. (36) we truncate the multipole
expansion at degree nmax. For each inclusion i, there are
4nmax − 1 unknown amplitudes of multipoles ai,out = {Ai,0,

Ai,1, . . . , Ai,nmax , Bi,1, Bi,2, . . . , Bi,nmax ,Ci,2,Ci,3, . . . ,Ci,nmax ,

Di,2, Di,3, . . . , Di,nmax} and 4nmax − 1 unknown amplitudes
of multipoles ai,in = {ai,2, ai,3, . . . , ai,nmax , bi,2, bi,3, . . . ,

bi,nmax , ci,0, ci,1, . . ., ci,nmax, di,1, di,2, . . . , di,nmax}. Furthermore,
we truncate the Taylor expansion for the Airy stress function
χout(r j (ri, ϕi ), ϕ j (ri, ϕi )|a j,out) in Eq. (33) at the same order
nmax. By matching the coefficients of the Fourier modes {1,
cos ϕi, sin ϕi, . . . , cos(nmaxϕi ), sin(nmaxϕi )} in the expansions
for tractions and displacements in Eq. (35) around the
circumference of the ith inclusion, we in principle get
2(2nmax + 1) equations from tractions and 2(2nmax + 1)
equations from displacements. However, the zero Fourier
modes for σrϕ and uϕ are equal to zero. Furthermore, the
coefficients of Fourier modes cos ϕi and sin ϕi are identical
for each of the σrr , σrϕ , ur , and uϕ in Eq. (35). By removing
the equations that do not provide new information, the
dimensions of matrices Mtrac

out,i j , Mtrac
in,i j , Mdisp

out,i j , and Mdisp
in,i j ,

become (4nmax − 1) × (4nmax − 1). Thus Eq. (36) describes
the system of N (8nmax − 2) equations for the amplitudes of
the induced multipoles {a1,out, a1,in, . . . , aN,out, aN,in}. The
solution of this system of equations gives amplitudes of
induced multipoles, which are linear functions of applied
loads σ ext

xx , σ ext
yy , and σ ext

xy . These amplitudes are then used
to obtain the Airy stress functions χ tot

in (x, y|ai,in ) in Eq. (29)
inside inclusions and χ tot

out(x, y|aout ) in Eq. (27) outside
inclusions, which enables us to calculate stresses and
displacements everywhere in the structure. The accuracy
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FIG. 5. Deformation of an infinite elastic plate with two circular inclusions under uniaxial stress σ ext
xx and plane stress condition.

(a) Schematic image describing the initial undeformed shape of the structure and applied load σ ext
xx = −0.25E0. The diameters of both

inclusions (blue and orange disks) are d and the separation distance between their centers is a. The Young’s moduli of the left and right
inclusions are E1/E0 = 0.25 and E2/E0 = 4, respectively, where E0 is the Young’s modulus of the outer material. Poisson’s ratios of the left
and right inclusions and the outer material are ν1 = 0.45, ν2 = 0.15, and ν0 = 0.3, respectively. (b)–(d) Contours of the deformed inclusions
for different values of the separation distance a/d = 2, 1.4, and 1.1. The solid red, yellow, and dashed blue lines show the contours obtained
with elastic multipole method for nmax = 2, 4, and 8, respectively. Green solid lines show the contours obtained with linear finite element
simulations. (e)–(j) von Mises stress (σvM) distributions obtained with (e)–(g) elastic multipole method (nmax = 9) and (h)–(j) linear finite
element simulations for different separation distances of inclusions a/d . von Mises stress distributions are normalized with the value of von
Mises stress σ ext

vM = |σ ext
xx | due to the applied load. Four marked points A–D were chosen for the quantitative comparison of stresses and

displacements between elastic multipole method and finite element simulations. See Table IV for details.

of the obtained results depends on the number nmax for the
maximum degree of induced multipoles, where larger nmax

yields more accurate results. In the next two sections, we
compare the results of the elastic multipole method described
above with linear finite element simulations and experiments.

B. Comparison with linear finite element simulations

First, we tested the elastic multipole method for two cir-
cular inclusions embedded in an infinite plate subjected to
uniaxial stress (Fig. 5) and shear stress (Fig. 6). The two
inclusions had identical diameters d and they were centered
at (±a/2, 0). Three different values of the separation distance
a between the inclusions were considered: a = 2d , a = 1.4d ,
and a = 1.1d . The left and right inclusions were chosen to

be more flexible (E1/E0 = 0.25) and stiffer (E2/E0 = 4) than
the outer elastic matrix with the Young’s modulus E0, re-
spectively. We used plane stress condition with Kolosov’s
constants κi = (3 − νi )/(1 + νi ), where Poisson’s ratios of the
left and right inclusions, and the outer material were ν1 =
0.45, ν2 = 0.15, and ν0 = 0.3, respectively. The values of the
applied uniaxial stress and shear stress were σ ext

xx /E0 = −0.25
(Fig. 5) and σ ext

xy /E0 = 0.1 (Fig. 6), respectively. Such large
values of external loads were used only to exaggerate defor-
mations. Note that in practical experiments these loads would
cause nonlinear deformation.

In Figs. 5 and 6 we show contours of deformed inclusions
and spatial distributions of stresses for different values of the
separation distance a between the inclusions, where the results
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TABLE IV. Quantitative comparison for the values of von Mises stresses σvM and displacements u at points A–D (defined in Fig. 5)
obtained with the elastic multipole method (EMP) and finite element method simulations (FEM) for uniaxially compressed samples with
two inclusions of diameter d for different values of their separation distance a. von Mises stresses σvM are normalized with the value of von
Mises stress σ ext

vM = |σ ext
xx | due to the applied uniaxial compression. Displacements u are normalized with the characteristic scale of deformation

dσ ext
vM/E0, where E0 is the Young’s modulus of the elastic matrix. The relative percent errors ε between the two methods are calculated as

100 × (σ EMP
vM − σ FEM

vM )/σ FEM
vM and 100 × (|u|EMP − |u|FEM)/|u|FEM.

Separation a = 2d Separation a = 1.4d Separation a = 1.1d

Stress σvM/σ ext
vM Disp. |u|/[dσ ext

vM/E0] Stress σvM/σ ext
vM Disp. |u|/[dσ ext

vM/E0] Stress σvM/σ ext
vM Disp. |u|/[dσ ext

vM/E0]

EMP FEM ε (%) EMP FEM ε (%) EMP FEM ε (%) EMP FEM ε (%) EMP FEM ε (%) EMP FEM ε (%)

A 1.419 1.416 0.2 1.442 1.442 0.0 1.424 1.419 0.5 1.265 1.264 0.1 1.439 1.426 0.9 1.223 1.220 0.3
B 0.940 0.947 0.7 0.082 0.081 0.5 0.940 0.959 1.9 0.116 0.116 0.7 0.887 0.910 2.7 0.127 0.126 1.0
C 1.213 1.216 0.3 0.654 0.653 0.1 1.083 1.092 0.8 0.275 0.274 0.3 0.933 0.948 1.5 0.122 0.122 0.3
D 0.997 0.997 0.0 1.144 1.144 0.0 0.994 0.994 0.0 1.250 1.250 0.0 0.992 0.992 0.0 1.363 1.363 0.0

from elastic multipole method were compared with linear
finite element simulations on a square domain of size 400d ×
400d (see the Appendix for details). When the inclusions are
far apart, they interact weakly, as can be seen from the expan-
sion of stresses and displacements in Eq. (35), where the terms
describing interactions between the inclusions i and j contain
powers of Ri/ai j � 1 and Rj/ai j � 1. This is the case for the
separation distance a = 2d , where we find that the contours
of deformed inclusions have elliptical shapes [see Figs. 5(b)
and 6(b)] and stresses inside the inclusions are uniform [see
Figs. 5(e), 5(h), 6(e) and 6(h)], which is characteristic for iso-
lated inclusions [see Eq. (24) and [1]]. Furthermore, the von
Mises stress distribution (σvM =

√
σ 2

xx − σxxσyy + σ 2
yy + 3σ 2

xy)
around the more flexible left inclusion [see Figs. 5(e) and 5(h)]
is similar to that of an isolated hole under uniaxial stress [see
Fig. 1(c)]. For the stiffer right inclusion, the locations of the
maxima and minima in the von Mises stress distribution are
reversed [see Figs. 5(e) and 5(h)] because the amplitudes of
induced multipoles have the opposite sign [see Eq. (23)].

Similar patterns in the von Mises stress distribution are
observed when the structure is under external shear, but they
are rotated by 45◦ [see Figs. 6(e) and 6(h)]. When inclusions
are far apart (a = 2d), the contours of deformed inclusions
can be accurately described already with multipoles up to
degree nmax = 2 [see Figs. 5(b) and 6(b)]. This degree of

multipoles is sufficient because external stresses σ ext
xx and σ ext

xy
couple only to the Fourier modes 1, cos 2ϕi, and sin 2ϕi in
the expansion for stresses and displacements in Eq. (35).
As the inclusions are moved closer together (a = 1.4d and
a = 1.1d), they interact more strongly. As a consequence, the
contours of deformed inclusions become progressively more
nonelliptical and higher order of multipoles are needed to
accurately describe their shapes [see Figs. 5(c), 5(d), 6(c),
and 6(d)]. Furthermore, the stress distribution inside the right
inclusion becomes nonuniform [see Figs. 5(f), 5(g), 5(i), 5(j)
and 6(f), 6(g), 6(i), 6(j)]. Note that von Mises stress dis-
tributions look similar far from inclusions regardless of the
separation distance a (see Figs. 5 and 6), because they are
dictated by the lowest order induced multipoles, i.e., by non-
topological monopoles (p), nontopological dipoles (dp), and
quadrupoles (Qs, Qp).

To determine the proper number for the maximum degree
nmax of induced multipoles we performed a convergence anal-
ysis for the spatial distributions of displacements u(nmax )(x, y)
and von Mises stresses σ

(nmax )
vM (x, y). Displacements and von

Mises stresses were evaluated at Np = 1001 × 1001 points
on a square grid of size 10d × 10d surrounding the inclu-
sions, i.e., at the points (xi, y j ) = (id/100, jd/100), where
i, j ∈ {−500,−499, . . . , 500}. The normalized errors for dis-
placements εdisp(nmax) and stresses εstress(nmax) were obtained

TABLE V. Quantitative comparison for the values of von Mises stresses σvM and displacements u at points A–D (defined in Fig. 6)
obtained with the elastic multipole method (EMP) and finite element method simulations (FEM) for sheared samples with two inclusions
of diameter d for different values of their separation distance a. von Mises stresses σvM are normalized with the value of von Mises stress
σ ext

vM = √
3|σ ext

xy | due to the applied shear. Displacements u are normalized with the characteristic scale of deformation dσ ext
vM/E0, where E0 is

the Young’s modulus of the elastic matrix. The relative percent errors ε between the two methods are calculated as 100 × (σ EMP
vM − σ FEM

vM )/σ FEM
vM

and 100 × (|u|EMP − |u|FEM)/|u|FEM.

Separation a = 2d Separation a = 1.4d Separation a = 1.1d

Stress σvM/σ ext
vM Disp. |u|/[dσ ext

vM/E0] Stress σvM/σ ext
vM Disp. |u|/[dσ ext

vM/E0] Stress σvM/σ ext
vM Disp. |u|/[dσ ext

vM/E0]

EMP FEM ε (%) EMP FEM ε (%) EMP FEM ε (%) EMP FEM ε (%) EMP FEM ε (%) EMP FEM ε (%)

A 1.027 1.026 0.1 1.167 1.166 0.1 1.051 1.047 0.4 1.132 1.131 0.1 1.085 1.076 0.9 1.159 1.156 0.2
B 1.045 1.050 0.5 0.387 0.387 0.2 1.065 1.081 1.5 0.379 0.377 0.5 1.106 1.134 2.5 0.371 0.368 0.8
C 1.415 1.419 0.2 0.159 0.159 0.0 1.469 1.481 0.8 0.280 0.279 0.2 1.512 1.533 1.4 0.407 0.405 0.4
D 1.016 1.016 0.0 4.235 4.235 0.0 1.016 1.016 0.0 4.265 4.265 0.0 1.020 1.020 0.0 4.275 4.275 0.0
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FIG. 6. Deformation of an infinite elastic plate with two circular inclusions under shear stress σ ext
xy and plane stress condition. (a) Schematic

image describing the initial undeformed shape of the structure and applied load σ ext
xy = 0.1E0, where E0 is the Young’s modulus of the outer

material. The diameter of both inclusions (blue and orange disks) is d and the separation distance between their centers is a. Material properties
are the same as in Fig. 5. (b)–(d) Contours of the deformed inclusions for different values of the separation distance a/d = 2, 1.4, and 1.1. The
solid red, yellow, and dashed blue lines show the contours obtained with elastic multipole method for nmax = 2, 4, and 8, respectively. Green
solid lines show the contours obtained with finite element simulations. (e)–(j) von Mises stress (σvM) distributions obtained with (e)–(g) elastic
multipole method (nmax = 9) and (h)–(j) linear finite element simulations for different separation distances of inclusions a/d . von Mises stress
distributions are normalized with the value of von Mises stress σ ext

vM = √
3|σ ext

xy | due to the applied load. Four marked points A–D were chosen
for the quantitative comparison of stresses and displacements between elastic multipole method and finite element simulation. See Table V for
details.

by calculating the relative changes of the spatial distributions
of displacements and von Mises stresses when the maximum
degree nmax of induced multipoles is increased by one. The
normalized errors are given by [60]

εdisp(nmax) =
√√√√∑

i, j

[
u(nmax+1)(xi, y j ) − u(nmax )(xi, y j )

]2

Np
(
d σ ext

vM/E0
)2 ,

(37a)

εstress(nmax) =
√√√√∑

i, j

[
σ

(nmax+1)
vM (xi, y j ) − σ

(nmax )
vM (xi, y j )

]2

Np
(
σ ext

vM

)2 .

(37b)

Here, displacements and von Mises stresses are normalized
by the characteristic scales dσ ext

vM/E0 and σ ext
vM, respectively,

where d is the diameter of inclusions, σ ext
vM is the value of the

von Mises stress due to external load, and E0 is the Young’s
modulus of the surrounding elastic matrix. The normalized
errors are plotted in Fig. 7. As the maximum degree nmax

of induced multipoles is increased, the normalized errors for
displacements εdisp(nmax) and stresses εstress(nmax) decrease
exponentially. Since the induced elastic multipoles form the
basis for the biharmonic equation, this is akin to the spectral
method, which is exponentially convergent when the func-
tions and the boundaries are smooth [60]. The normalized
errors for displacements are lower than the errors for stresses
(see Fig. 7) because stresses are related to spatial derivatives
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FIG. 7. Normalized errors and amplitudes of induced multipoles for the structures with two inclusions with diameters d and the separation
distance a under (a) uniaxial stress σ ext

xx (see Fig. 5) and (b) shear stress σ ext
xy (see Fig. 6). The normalized errors for displacements εdisp(nmax)

(blue lines) and stresses εstress(nmax) (red lines) are defined in Eq. (37). Absolute values of the amplitudes of induced multipoles {a1,out, a2,out} for
nmax = 9. In (a) the amplitudes are normalized as ãn = an/σ

ext
xx , c̃n = cn/σ

ext
xx , Ãn = An/σ

ext
xx , and C̃n = Cn/σ

ext
xx . The dark purple and orange bars

correspond to the positive (an, cn, An,Cn > 0) and negative (an, cn, An,Cn < 0) amplitudes for inclusion 1, respectively. Similarly, the green
and yellow colored bars correspond to the positive and negative amplitudes for inclusion 2, respectively. Note that the amplitudes of multipoles
bi, di, Bi, and Di are zero due to the symmetry of the problem. In (b) the amplitudes are normalized as b̃n = bn/σ

ext
xy , d̃n = dn/σ

ext
xy , B̃n =

Bn/σ
ext
xy , and D̃n = Dn/σ

ext
xy . The dark purple and orange bars correspond to the positive (bn, dn, Bn, Dn > 0) and negative (bn, dn, Bn, Dn < 0)

amplitudes for inclusion 1, respectively. Similarly, the green and yellow bars correspond to the positive and negative amplitudes for inclusion
2, respectively. Note that the amplitudes of multipoles ai, ci, Ai, and Ci are zero due to the symmetry of the problem.
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(a) (b)

FIG. 8. Deformation of an infinite elastic plate with ten circular inclusions (orange disks) under general external stress. (a) Schematic image
describing the initial undeformed shape of the structure and applied external loads: σ ext

xx /E0 = −0.25, σ ext
yy /E0 = 0.05, and σ ext

xy /E0 = 0.10,
where E0 is the Young’s modulus of the outer material. The plane stress condition was used. The radii and material properties (Young’s moduli
Ei and Poisson’s ratios νi) of inclusions are provided in the table below the schematic image. The radii of inclusions are normalized by the
radius of the largest inclusion. The Young’s moduli are normalized by the Young’s modulus of the outer material E0. The value of Poisson’s
ratio for the outer material was ν0 = 0.3. (b) Contours of deformed inclusions. The blue dashed lines show the results obtained with the elastic
multipole method (nmax = 6). The green solid lines correspond to the deformed contours obtained with linear finite element simulations.

of displacements. Note that the normalized errors decrease
more slowly when inclusions are brought close together and
their interactions become important (see Fig. 7). This is also
reflected in the amplitudes a1,in, a2,in, a1,out, and a2,out of the
induced multipoles, which decrease exponentially with the
degree of multipoles, and they decrease more slowly when
inclusions are closer (see Fig. 7).

Results from the elastic multipole method were compared
with linear finite element simulations, and very good agree-
ment is achieved already for nmax = 9 even when inclusions
are very close together (a = 1.1d; see Figs. 5 and 6). To make
the comparison with finite elements more quantitative, we
compared the values of displacements and stresses at four dif-
ferent points: A, at the edge of the left inclusion; B, between
the inclusions; C, at the center of the right inclusion; and D,
far from both inclusions (see Figs. 5 and 6). For all four points,
the error increases when inclusions are brought closer together
(see Tables IV and V). Of the four different points, we find
that the errors are the largest at point B, which is strongly
influenced by induced multipoles from both inclusions. For
the smallest separation distance a = 1.1d between the inclu-
sions, the errors for the von Mises stress at point B are 2.7%
and 2.5% for the uniaxial and shear loads, respectively. These
errors can be further reduced by increasing the number nmax

for the maximum degree of multipoles, e.g., for nmax = 14 the
errors for von Mises stress at point B are reduced to 1.2% and
1.1% for the uniaxial and shear loads, respectively.

To demonstrate the full potential of the elastic multipole
method, we also considered the deformation of an infinite

plate with N = 10 inclusions of different sizes and mate-
rial properties subjected to general external stress load under
plane stress condition (see Fig. 8). The contours of deformed
inclusions obtained with finite element simulations (green
solid lines) and elastic multipole method with nmax = 6 (blue
dashed lines) are in very good agreement. Note that the results
for the elastic multipole method were obtained by solving the
linear system of only N (8nmax − 2) = 460 equations for the
amplitudes of the induced multipoles described in Eq. (36),
which is significantly smaller than the number of degrees of
freedom required for finite element simulations.

C. Comparison with experiments

Finally, we also tested the elastic multipole method against
experiments. Experimental samples were prepared by casting
Elite Double 32 (Zhermack) elastomers with the measured
Young’s modulus E0 = 0.97 MPa and assumed Poisson’s ra-
tio ν = 0.49 [19]. Molds were fabricated from 5 mm thick
acrylic plates with laser-cut circular holes, which were then
filled with acrylic cylinders in the assembled molds to create
cylindrical holes in the elastomer samples. Approximately
30 min after casting, the molds were disassembled and the
solid samples were placed in a convection oven at 40 ◦C
for 12 h for further curing. The cylindrical inclusions made
from acrylic (Young’s modulus E = 2.9 GPa, Poisson’s ratio
ν = 0.37 [61]) were inserted into the holes of the elas-
tomer samples, and they were glued by a cyanoacrylate
adhesive.
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(a) (b)

FIG. 9. Experimental systems for displacement controlled compressive tests. (a) A mechanism for compression of rubber samples (green
slab) sits on top of a flatbed photo scanner, which is used to extract the contours of deformed holes and inclusions. The zoomed-in photo on
the left shows a 3D-printed plastic wrench that was used for the precise control of screw turns. (b) Setup for extracting strain fields via digital
image correlation (DIC). The surface of the sample was painted with speckle patterns. The sample was then compressed with steel plates of
the testing machine and photos of speckle patterns were used to extract the displacement field on the front surface of the slab. The zoomed-in
photo on the right shows the rubber sample with one hole and one inclusion (indicated with a red dashed circle) mounted between two parallel
plates of the testing machine.

We designed two compressive testing systems (see Fig. 9)
to compare the contours of deformed holes and inclusions and
strain fields with predictions made by the elastic multipole
method. In Fig. 9(a) we first present an experimental system
for extracting the contours of deformed holes and inclusions
in compressed experimental samples. The system comprises a
custom-made loading mechanism and a flatbed photo scanner.
Displacement loading is applied in 0.5 mm increments via
180◦ turns of the M10x1 screw (metric thread with 10 mm di-
ameter and 1 mm pitch) in the mechanism, which is controlled
by a 3D-printed plastic wrench [see the inset of Fig. 9(a)].
The loading mechanism was placed on an Epson V550 photo
scanner to scan the surface of deformed samples and silicone
oil was applied between the sample and the glass surface of
the scanner to reduce friction between them. Scanned images
were postprocessed with Corel PHOTO-PAINT X8 and the
Image Processing Toolbox in MATLAB 2018b. First, the dust
particles and air bubbles trapped in a thin film of silicone oil
were digitally removed from the scanned images. Scanned
grayscale images were then converted to black and white
binary images from which the contours were obtained with
MATLAB.

Second, we present a system for capturing the displace-
ment and strain fields in compressed samples via digital image
correlation (DIC) technique [see Fig. 9(b)]. Black and white
speckle patterns were spray-painted onto the surface of sam-
ples with slow-drying acrylic paint to prevent the speckle
pattern from hardening too quickly, which could lead to de-
lamination under applied compressive loads. Using a Zwick
Z050 universal material testing machine, we applied a com-
pressive displacement in 0.2 mm increments, where again
a silicone oil was applied between the steel plates and the
elastomer samples to prevent sticking and to reduce friction.
A Nikon D5600 photo camera was used at each step to take a
snapshot of the compressed sample [see Fig. 9(b)]. These pho-
tos were then used to calculate the displacements and strain
fields with Ncorr, an open-source 2D DIC MATLAB-based
software [62].

We analyzed uniaxially compressed 100 mm × 100 mm ×
25 mm elastomer structures with three different configura-
tions (horizontal, vertical and inclined at 45◦ angle) of two
holes with identical diameters d = 8.11 mm and their sepa-
ration distance a = 9.50 mm [see Figs. 10(a)–10(c)]. Holes
were placed near the centers of elastomer structures to mini-
mize the effects of boundaries. The structures were relatively
thick (25 mm) to prevent the out-of-plane buckling. The con-
tours of deformed holes in compressed experimental samples
under external strain εext

yy = −0.05 were compared with those
obtained with elastic multipole method and finite element
simulations [see Figs. 10(d)–10(f)]. For the elastic multipole
method, we used external stress σ ext

yy = E0ε
ext
yy (σ ext

xx ≈ σ ext
xy ≈ 0

due to reduced friction) and plane stress condition was as-
sumed since the experimental samples were free to expand in
the out-of-plane direction. Linear finite element simulations
were performed for finite-size (100 mm × 100 mm) 2D struc-
tures with circular holes under plane stress condition. In finite
element simulations, samples were compressed by prescribing
a uniform displacement in the y-direction on the upper and
lower surfaces, while allowing nodes on these surfaces to
move freely in the x-direction. The midpoint of the bottom
edge was constrained to prevent rigid body translations in the
x-direction.

The contours of deformed holes obtained in experiments
agree very well with those obtained with elastic multipole
method (nmax = 10) and linear finite element simulations for
all three configurations of holes [see Figs. 10(a)–10(c)]. We
also compared the equivalent von Mises strain fields defined
as εvM = σvM/E [33] with

εvM =
√

ε2
xx − εxxεyy + ε2

yy + 3ε2
xy + ν

(1−ν)2 (εxx + εyy)2

1 + ν
(38)

that were obtained with elastic multipole method (nmax = 10),
finite element simulations, and DIC analyses of experiments
(see Fig. 11). For all three configurations of holes, the
strain fields agree very well between the elastic multipole
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(a) (c)(b)

(d) (f)(e)

FIG. 10. Uniaxial vertical compression of elastic structures with holes and inclusions. (a)–(c) Schematic images describing the initial
undeformed shapes of structures with two holes (white disks) in three different configurations (horizontal, vertical, and inclined at 45◦) and
applied external strain εext

yy = −0.05. Deformed contours of holes obtained with elastic multipole method (nmax = 10, blue dashed lines),
experiments (red solid lines), and finite element simulations (solid green lines). (d)–(f) Schematic images describing the initial undeformed
shapes of structures with one hole (white disks) and one inclusion (orange disks) in three different configurations (horizontal, vertical and
inclined at 45◦), and applied external strain εext

yy = −0.05. Deformed contours of holes and inclusions obtained with elastic multipole method
(nmax = 10, blue dashed lines), experiments (red solid lines), and finite element simulations (solid green lines). In all cases, the size of samples
was 100 mm × 100 mm × 25 mm, the diameters of each hole/inclusion were d = 8.11 mm, and their separation distances were a = 9.50 mm.

method [Figs. 11(a)–11(c)] and finite element simulations
[Figs. 11(d)–11(f)]. The strain fields for experimental samples
are qualitatively similar, but they differ quantitatively near the
holes as can be seen from heat maps in Figs. 11(g)–11(i). The
quantitative comparison of strains at four different points A–D
(marked in Fig. 11) showed a relative error of 2%–4% be-
tween elastic multipole method and finite elements, and a rel-
ative error of 0%–14% between elastic multipole method and

experiments (see Table VI). The discrepancy between elastic
multipole method and finite element simulations is attributed
to the finite size effects. For elastic multipole method, we as-
sumed an infinite domain, while finite domains were modeled
in finite element simulations to mimic experiments. Since the
domains are relatively small, interactions of induced elastic
multipoles with boundaries become important, which is dis-
cussed in detail in the companion paper [50]. The discrepancy
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FIG. 11. Equivalent von Mises strain fields εvM [see Eq. (38)] for uniaxially vertically compressed elastic structures with two holes (white
disks) in three different configurations (horizontal, vertical, inclined at 45◦) introduced in Fig. 10. Equivalent von Mises strain fields εvM were
obtained with (a)–(c) elastic multipole method (nmax = 10), (d)–(f) finite element simulations, and (g)–(i) DIC analysis of experiments. Note
that the strain data were corrupted near the edges for some samples due to oil stains on the speckle patterns near the boundary. For this reason,
we omitted the affected border regions (gray frames) in heat maps (g–i). Four marked points A–D were chosen for the quantitative comparison
of strains εvM. See Table VI for details.

between experiments and elastic multipole method is also
attributed to the confounding effects of nonlinear deformation
due to moderately large compression (εext

yy = −0.05), 3D de-
formation due to relatively thick samples, fabrication imper-
fections, nonzero friction between the sample and the mount-
ing grips of the testing machine, the alignment of camera with
the sample (2D DIC system was used), and the errors resulting
from the choice of DIC parameters (see, e.g., [63,64]).

Experiments were repeated with relatively rigid inclusions
(Einc/E0 = 3000), where the samples described above were
reused. Acrylic (PMMA) rods were inserted into one of the
holes and glued with a cyanoacrylate adhesive for each of

the samples. The contours of deformed holes obtained in
experiments matched very well with those obtained with
elastic multipole method (nmax = 10) and finite element sim-
ulations for all three configurations of holes and inclusions
[see Figs. 10(d)–10(f)]. A relatively good agreement was also
obtained for strain fields (see Fig. 12), where the strains in-
side rigid inclusions are very small (black). The quantitative
comparison of strains at four different points A–D (marked
in Fig. 12) showed a relative error of 0%–5% between elastic
multipole method and finite elements, and a relative error of
0%–12% between elastic multipole method and experiments
(see Table VII).
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TABLE VI. Quantitative comparison for the values of equivalent von Mises strains εvM normalized with the value for the applied external
load εext

vM at points A–D (defined in Fig. 11) in compressed samples with two holes in three different configurations (horizontal, vertical,
inclined) obtained with elastic multipole method (EMP), finite element method simulations (FEM) and DIC analysis of experiments (EXP).
The relative percent errors between EMP and FEM were calculated as 100 × (ε(EMP)

vM − ε
(FEM)
vM )/ε(FEM)

vM . The relative percent errors between
EMP and EXP were calculated as 100 × (ε(EMP)

vM − ε
(EXP)
vM )/ε(EXP)

vM .

Horizontal Vertical Inclined

Strain εvM/εext
vM Error of EMP (%) Strain εvM/εext

vM Error of EMP (%) Strain εvM/εext
vM Error of EMP (%)

Point EMP FEM EXP FEM EXP EMP FEM EXP FEM EXP EMP FEM EXP FEM EXP

A 1.17 1.14 1.17 2.6 0.2 1.14 1.12 1.12 2.0 2.3 1.19 1.16 1.18 2.6 0.7
B 1.07 1.04 1.11 2.7 3.8 0.71 0.69 0.73 2.0 3.3 0.63 0.61 0.63 3.9 0.3
C 1.05 1.03 0.92 2.5 14.1 1.23 1.21 1.12 1.7 10.2 1.21 1.18 1.15 2.7 4.9
D 1.03 1.00 0.98 2.8 4.5 1.02 1.00 1.00 1.6 2.0 1.03 1.00 0.99 2.8 4.2

IV. CONCLUSION

In this paper, we demonstrated how induction and multi-
pole expansion, which are common concepts in electrostatics,
can be effectively used also for analyzing the linear defor-
mation of infinite 2D elastic structures with circular holes
and inclusions for both plane stress and plane strain condi-
tions. Unlike in electrostatics, there are two different types of
multipoles Qs

n and Qp
n in elasticity, which are derived from

topological monopoles s (disclinations) and nontopological
monopoles p. This is due to the biharmonic nature of the
Airy stress function. The external load can induce all of these
multipoles except for the topological defects called disclina-
tions (topological monopole s) and dislocations (topological
dipole ds).

The multipole expansion is a so-called far-field method
and is thus extremely efficient when holes and inclusions are
far apart. In this case, very accurate results can be obtained
by considering only induced quadrupoles, because the ef-
fect of higher-order multipoles decays more rapidly at large
distances. When holes and inclusions are closer together,
their interactions via induced higher-order multipoles become
important as well. The accuracy of the results increases ex-
ponentially with the maximum degree of elastic multipoles,
which is also the case in electrostatics, and this is characteris-
tic for spectral methods [60].

Note that the Stokes flows in two dimensions can also be
described in terms of the biharmonic equations of the stream

function [65]. Hence, it may seem that the multipole method
described above could be adapted for Stokes flows around
rigid and deformable obstacles. However, this is not possible
due to the Stokes’ paradox, which is the phenomenon that
there can be no creeping flow of a fluid around a disk in two
dimensions [65].

The elastic multipole method presented here was limited
to deformations of infinite structures with holes and inclu-
sions of circular shapes. It can be generalized to deformations
of finite size structures by employing the concept of image
charges from electrostatics, which is discussed in detail in the
companion paper [50]. This method can also be adapted to
describe deformations of structures with noncircular holes and
inclusions. One still needs to use the boundary conditions that
tractions and displacements are continuous across the bound-
ary of the inclusion [see Eq. (30)] to obtain a set of linear
equations for the amplitudes of multipoles. One option is to
expand tractions and displacements in terms of the Fourier
modes up to order nmax both outside and inside inclusions and
match their coefficients. An alternative option is to satisfy the
continuity of tractions and displacements at 2nmax different
points on the boundary of each inclusion. The elastic multi-
pole method can also be straightforwardly extended to include
defects inside elastic materials by adding their contributions
to the Airy stress functions (see Sec. II). Note, however, that
the linear elasticity breaks down in the vicinity of defects,
where the displacement fields are singular (see Table II). This

TABLE VII. Quantitative comparison for the values of equivalent von Mises strains εvM normalized with the value for the applied external
load εext

vM at points A–D (defined in Fig. 12) in compressed samples with one hole and one inclusion in three different configurations (horizontal,
vertical, inclined) obtained with elastic multipole method (EMP), finite element method simulations (FEM) and DIC analysis of experiments
(EXP). The relative percent errors between EMP and FEM were calculated as 100 × (ε(EMP)

vM − ε
(FEM)
vM )/ε(FEM)

vM . The relative percent errors
between EMP and EXP were calculated as 100 × (ε(EMP)

vM − ε
(EXP)
vM )/ε(EXP)

vM .

Horizontal Vertical Inclined

Strain εvM/εext
vM Error of EMP (%) Strain εvM/εext

vM Error of EMP (%) Strain εvM/εext
vM Error of EMP (%)

Point EMP FEM EXP FEM EXP EMP FEM EXP FEM EXP EMP FEM EXP FEM EXP

A 1.21 1.20 1.23 0.7 1.1 1.11 1.07 1.06 3.9 4.5 0.61 0.59 0.57 4.8 7.0
B 0.70 0.70 0.62 0.6 11.9 1.14 1.14 1.27 0.5 10.1 1.18 1.15 1.18 2.4 0.5
C 1.14 1.13 1.09 0.7 4.0 0.57 0.56 0.61 1.4 6.3 1.16 1.15 1.17 0.7 1.2
D 1.01 1.00 0.97 0.2 3.7 1.00 0.99 0.97 1.0 3.3 1.00 0.99 0.96 0.8 4.0
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FIG. 12. Equivalent von Mises strain fields εvM [see Eq. (38)] for uniaxially vertically compressed elastic structures with one hole (white
disks) and one inclusion (blue disks) in three different configurations (horizontal, vertical, inclined at 45◦) introduced in Fig. 10. Equivalent
von Mises strain fields εvM were obtained with (a)–(c) elastic multipole method (nmax = 10), (d)–(f) linear finite element simulations, and
(g)–(i) DIC analysis of experiments. Note that the strain data were corrupted near the edges for some samples due to oil stains on the speckle
patterns near the boundary. For this reason, we omitted the affected border regions (gray frames) in heat maps (g)–(i). Four marked points A–D
were chosen for the quantitative comparison of strains εvM. See Table VII for details.

can be remedied via strain gradient elasticity [66–68]. The
elastic multipole method can in principle also be generalized
to describe deformations of curved thin shells with inclusions.
The local force balance can still be satisfied by representing
stresses in terms of the Airy stress function [53]. However, in
order to find the Airy stress functions for the monopoles and
higher order multipoles, one also needs to include the bend-
ing moment balance equation and appropriately modify the
compatibility conditions by taking into account the Gaussian
curvature of the shell [69–71].

While the elastic multipole method presented here focused
only on linear deformation, similar concepts can also be
useful for describing the postbuckling deformation of me-

chanical metamaterials. Previously, it was demonstrated that
the buckled patterns of structures with periodic arrays of holes
[18,59,72,73], square frames [74,75], and Kirigami slits [74]
can be qualitatively described with interacting quadrupoles.
Furthermore, the approach with elastic quadrupoles has re-
cently been extended to the nonlinear regime of compressed
structures with periodic arrays of holes, which can estimate
the initial linear deformation, the critical buckling load, as
well as the buckling mode [57]. The accuracy of these results
could be further improved by expanding the induced fields to
higher-order multipoles. Thus, the elastic multipole method
has the potential to significantly advance our understanding of
deformation patterns in structures with holes and inclusions.
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APPENDIX: LINEAR FINITE ELEMENT SIMULATIONS

Linear analyses in finite element simulations were per-
formed with the commercial software Ansys® Mechanical,
Release 17.2. Geometric models of plates with holes and
inclusions were discretized with 2D eight-node, quadratic
elements of type PLANE183 set to the plane stress state
option. The material for plates and inclusions was modeled
as a linear isotropic elastic material. To minimize the effect
of boundaries for the comparison with the elastic multipole
method, which considers an infinite domain, we chose a suffi-
ciently large square-shaped domain of size L = 400d , where
d is the diameter of inclusions. To ensure high accuracy, we
used a fine mesh with 360 quadratic elements evenly spaced
around the circumference of each inclusion. To keep the total
number of elements at a manageable number, the size of
the elements increased at a rate of 2% per element, when
moving away from inclusions, up to the largest elements at
the domain boundaries with an edge length of L/200. To
prevent rigid body motions of the whole structure, we fixed
the following three degrees of freedom: the displacement
vector at the center of the square domain was specified to
be zero (ux(0, 0) = 0, uy(0, 0) = 0); the midpoint of the left

edge of the square domain was constrained to move only in
the x-direction (uy(−L/2, 0) = 0). For consistency with finite
element simulations, we imposed the same set of constraints
[ux(0, 0) = 0, uy(0, 0) = 0, uy(−L/2, 0) = 0] for the elastic
multipole method. This was done in two steps. After obtain-
ing the displacement field (uEMP

x (x, y), uEMP
y (x, y)) with the

elastic multipole method, we first subtracted the displacement
(uEMP

x (0, 0), uEMP
y (0, 0)) at each point

u′EMP
x (x, y) = uEMP

x (x, y) − uEMP
x (0, 0), (A1a)

u′EMP
y (x, y) = uEMP

y (x, y) − uEMP
y (0, 0), (A1b)

to ensure that the center of the square domain is fixed
[u′EMP

x (0, 0) = u′EMP
y (0, 0) = 0]. For this updated displace-

ment field, the coordinates of points in the deformed con-
figuration are x′(x, y) = x + u′EMP

x (x, y) and y′(x, y) = y +
u′EMP

y (x, y). To impose the last constraint [uy(−L/2, 0) = 0],
this new deformed configuration was then rotated anti-
clockwise by the angle θ = tan−1(u′EMP

y (−L/2, 0)/[L/2 −
u′EMP

x (−L/2, 0)]) around the origin of the coordinate system
as

x′′(x, y) = x′(x, y) cos θ − y′(x, y) sin θ ≡ x + u′′EMP
x (x, y),

(A2a)

y′′(x, y) = x′(x, y) sin θ + y′(x, y) cos θ ≡ y + u′′EMP
y (x, y).

(A2b)

The set of displacement fields u′′EMP
x (x, y) and u′′EMP

y (x, y)
was then used for comparison with finite element simulations.
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