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A B S T R A C T   

We propose an efficient computational model for predicting the surface wrinkling in axially compressed bi-layer 
cylindrical shell-substrate composites. To capture the transitions between the wrinkling modes in the far post- 
buckling regime, we use implicit dynamics. In this context we apply a generalized-α and an energy-decaying 
time stepping schemes that numerically dissipate in the high frequency range. The other components of the 
model are a geometrically exact, rotation-less, nonlinear shell finite element for the cylinder and an elastic 
foundation that represents the substrate. We show that the proposed computational model predicts the wrinkling 
pattern transition from axisymmetric to diamond-like mode, which is consistent with the numerical and labo-
ratory experiments reported earlier. Furthermore, the results of our computational model show the existence of 
several diamond-like mode jumps in the post-buckling regime, a result that has not yet been reported for the 
axially compressed shell-substrate cylinders.   

1. Introduction 

Surface wrinkling exhibits some unique deformation patterns that 
can be found in diverse natural systems, ranging from biology to geol-
ogy, as well as in various engineering systems. Regardless of the context 
or parameter setting in which the wrinkle patterns are observed (natu-
ral/engineering, flat/curved, length-scale, external stimuli, etc.), they 
develop due to the stress relaxation associated with the loss of stability. 
As such, wrinkling is traditionally understood as a sign of failure. Just 
recently, we have seen the introduction of so-called active materials that 
exploit mechanical instabilities as a platform for advanced functionality 
and superior physical properties. Examples are the active control of 
adhesion [13], active control of wetting to achieve 
hydro-phobicity/-philicity [16], active control of aerodynamic drag 
[41], etc. A systematic understanding of the loss of stability and the 
wrinkling pattern evolution in these systems, see e.g. [11,14], requires 
analyses that reach far into the post-buckling regime, where unfortu-
nately any analytical calculations on curved geometry are practically 
impossible. The common approach is therefore to perform a numerical 
nonlinear static stability analysis, which usually includes the 
path-following methods and branch switching algorithms, see e.g. Refs. 
[17,38,39,44]. For problems where such methods fail, nonlinear 

structural dynamics can be used, for example [28]. Explicit schemes are 
preferred because they always provide results, but they may not be ac-
curate. Implicit schemes, on the other hand, are more accurate but more 
difficult to implement. 

These methods have been applied in several papers on the wrinkling 
of elastic films adhering to thick substrates in various curved geometry 
settings, including cylindrical [44,47], spherical [50], spheroidal [49] 
and toroidal [51]. In cylindrical shell-substrate composite systems, an 
axial and/or radial loading was applied to trigger wrinkling. For 
example, the deformations of stiff cylinders attached to elastic substrates 
and limited to radial wrinkling were studied in [12,27,29]. The wrin-
kling of anisotropic films on cylindrical substrates was investigated by 
Yin and Chen [46] to find an effective way for fabricating 3D (helical) 
gear-like structures. They analyzed the effects of geometric and material 
parameters on the wavelength and inclination of wrinkles. In Ref. [31] 
Patricio et al. investigated the wrinkling of stiff-shell/soft-core cylin-
drical fibers with mismatches in length and radius as well as critical 
conditions for the initiation of wrinkling along the fiber axis or wrin-
kling along the fiber circumference. They found that a stiffer and thicker 
shell tends to wrinkle along the circumference, while a thinner and 
softer shell tends to wrinkle along the length. The theoretical stability 
and pattern evolution on these cylindrical systems due to differential 
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volumetric growth was investigated by Jia et al. [22]. They found that 
during the post-buckling, depending on the geometric and material 
parameters, multiple morphological transitions occur, which lead to the 
formation of square, hexagonal and labyrinthine wrinkles. Furthermore, 
Zhao et al. [47] reported a combined experimental and theoretical 
investigation of the same system that was subjected to axial compres-
sion. They showed that regardless of the system properties, the first 
wrinkling mode is always axisymmetric and periodic along the longi-
tudinal axis of the cylinder. With some parameter settings they observed 
the transitions of the wrinkle patterns from axisymmetric to 
diamond-like patterns. They also found that the main role in this wrin-
kling mode transition is played by the ratio of the elastic moduli Es= Ef 

and the geometric ratio R=tf , where R and tf are the cylinder radius and 
the cylinder thickness, respectively (here, the subscript f refers to the 
film (shell) and subscript s to the substrate). Based on the work of Zhao 
et al. [47] and their own analysis, Xu and Potier-Ferry [44] proposed a 
coefficient 

C ¼ Es

,

Ef
�
R
�

tf
�3

2;  (1)  

with the critical value Ccrit � 0:88 and showed that for systems with C >

Ccrit only the axisymmetric wrinkling mode occurs, whereas for systems 
with C < Ccrit the transition from the axisymmetric to the diamond-like 
wrinkling mode is expected. An experimental and theoretical analysis of 
the similar problem was also carried out by Shao et al. [33] to investi-
gate hierarchical wrinkling patterns and to confirm these results. 

In Refs. [22,47], axially compressed cylinders on substrates were 
analyzed by Abaqus by a very dense mesh of 3D solid finite elements and 
a convenient initial geometric imperfection to trigger the wrinkling 
transition. The analyses were carried out in a static framework by 
pseudo-dynamic regularization. Such a model is to a certain extent 
tailored to reproduce the wrinkling transition and is computationally 
extremely costly. In Ref. [44] they investigated the wrinkling transition 
numerically by performing a static analysis using an advanced 
path-following method and a small perturbation force to trigger the 
transition to the secondary branch at the bifurcation points. They used a 
3D finite element model consisting of 8-node nonlinear shell element 
with 7 parameters, 8-node linear 3D solid elements and kinematic 
constraints between solid and shell degrees of freedom. 

In this paper we apply implicit dynamics to study the surface wrin-
kling of axially compressed cylinders adhering to soft substrates and the 
transitions between the wrinkling modes. Several popular time inte-
gration schemes that fall into the class of generalized-α methods [48] are 
tested to solve the problem, in particular, generalized energy mo-
mentum method (GAM), see e.g. Refs. [15,25,26], Hilber-Hughes-Taylor 
scheme (HHT) [20], and Bossak scheme (BAM), see e.g. Refs. [42,43]. 
Classical Newmark trapezoidal rule (NTR), see e.g. Refs. [3,9,30], is 
used as well. In addition, more recent energy and momentum conserving 
method (EMC), see e.g. Refs. [5,8,34,37], and energy-decaying scheme 
(ED) are also considered, see e.g. Refs. [1,8,32]. We note that GAM, HHT 
and BAM algorithmically dissipate high frequency modes, which are not 
well resolved due to the spatial and temporal discretization in a manner 
that the energy at a free motion does not always decrease (incremental 
energy dissipation may be negative). EMC is a non-dissipative scheme, 
designed to conserve energy and momentum of free motion, and ED 
controllably dissipates energy so that the incremental energy dissipation 
is always positive. For the cylinder model we use the 6-parameter 
stress-resultant extensible director shell model [36] for the shell, 
which is a rotation-less version of the geometrically exact shell theory 
presented e.g. in Refs. [4,10,35]. A quadrilateral shell finite element 
formulation is applied that is enhanced by the assumed natural strain 
(ANS), cf [2,18]. The benchmark tests (see Refs. [28,40]) show that this 
element yields practically identical results as 5-parameter and 7-param-
eter large rotation shell finite elements presented in Refs. [3,6,7]. The 

substrate is modelled as an elastic foundation, see e.g. Refs. [27,47]. Our 
computational model does not require any geometric imperfections or 
perturbation forces to trigger the transitions between wrinkling modes. 
The number of finite elements in the mesh is significantly lower 
compared to the 3D solid models. 

Our numerical experiments showed that both ED and GAM can 
predict the transition between the wrinkle patterns with considerable 
dissipation and in combination with an adaptive time-stepping algo-
rithm - similar to what was observed in experiments [47]. For the system 
with C < Ccrit, only the axisymmetric wrinkling mode was computed and 
for the system with C > Ccrit computations showed transitions from the 
axisymmetric to the diamond-like wrinkling modes. Moreover, in 
contrast to Refs. [44,47], in which only a smooth-to-axisymmetric and 
axisymmetric-to-diamond-like pattern transitions (and some localiza-
tions near the edge due to the shell boundary effects in Ref. [44]) were 
reported, our model additionally demonstrates other transitions be-
tween the post-buckling patterns. More specifically, we observe also the 
mode jumps from diamond-like patterns with smaller wavelengths to 
patterns with larger characteristic wavelengths as the load is increased. 
This is a novel result that has not been reported yet for the axially 
compressed shell-substrate cylinders. A similar effect is otherwise found 
on axially compressed cylindrical shells without the substrate support, 
as shown experimentally e.g. in Ref. [45] and reproduced numerically e. 
g. in Ref. [28]. Using classical implicit schemes, NTR, HHT and BAM, 
which are the default schemes in commercial finite element codes, we 
could not obtain reasonable results for the class of problems considered 
in this work (the same applies to the non-dissipative EMC scheme). 

2. Dynamic finite element formulation for stiff-shell-soft-core 
composites 

2.1. Shell on elastic foundation 

We model the shell via its middle surface and extensible shell di-
rectors. We assume that the middle surface can be parametrized (at least 
locally) by curvilinear coordinates ξ1 and ξ2. The position vector to the 
material point of the shell’s initial (reference) configuration is defined as 

X
�
ξ1; ξ2; ξ3� ¼ X0

�
ξ1; ξ2�þ ξ3 n

�
ξ1; ξ2�; ξ3 2 ½ � h=2; h=2�; k n k¼ 1; 

(2)  

where n is a normal vector to the middle surface and h is initial thick-
ness of the shell. The corresponding position vector in the current 
(deformed) configuration is 

x
�
ξ1; ξ2; ξ3� ¼ x0

�
ξ1; ξ2�þ ξ3 t

�
ξ1; ξ2�;  (3)  

where t is the deformed shell director. The relation between the initial 
and deformed configurations is 

x0 ¼ X0 þ u; t ¼ nþ w;  (4)  

where u is the displacement vector of the material point on the middle 
surface and w is the difference vector, see Fig. 1. 

The “in-plane” covariant components of the Green-Lagrange strain 
tensor are 

Eαβ ¼
1
2
ðx;α⋅x;β � X;α⋅X;βÞ ¼ εαβ þ ξ3καβ þ O

��
ξ3�2

�
; α; β 2 f1; 2g; 

(5)  

where we employ the notation ðÞ;α ¼ ∂ðÞ=∂ξα. The components of the 
shell membrane strain tensor and the shell bending strain tensor are 

εαβ ¼
1
2
ðx0;α⋅x0;β � X0;α⋅X0;βÞ;

καβ ¼
1
2
ð x0;α⋅t;β þ x0;β⋅t;α � X0;α⋅n;β � X0;β⋅n;αÞ;

(6) 
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respectively. The transverse shear strain covariant components of the 
Green-Lagrange strain tensor are 

Eα3 ¼
1
2
ðx;α⋅t � X;α⋅nÞ ¼ εα3 þ O

�
ξ3�; α; β 2 f1; 2g;  (7)  

and the transverse normal covariant component of the Green-Lagrange 
strain tensor is 

E33 ¼
1
2
ðx;3⋅x;3 � X;3⋅X;3Þ ¼

1
2
ðt⋅t � n⋅nÞ ¼ ε33: (8) 

Eqs. (6)–(8) define the strains of the rotation-less (6-parameter) 
extensible director shell model. It is convenient to collect them in three 
vectors 

ε ¼ ½ε11; ε22; ε33; 2ε12�
T
; κ ¼ ½κ11; κ22; 2κ12�

T
; γ ¼ ½2ε13; 2ε23�

T
:  (9) 

Energy-conjugated to the Green-Lagrange strains (9) are the con-
travariant second Piola-Kirchhoff shell stress resultants, which will be 
grouped into three vectors (collecting membrane forces and transverse 
normal force, bending moments, and transverse shear forces): 

N ¼
�
N11;N22;N33;N12�T

; M ¼
�
M11;M22;M12�T

; Q ¼
�
Q13;Q23�T

: 
(10)  

With Eqs. (9) and (10) at hand, the weak form of the equilibrium 
equations is 
Z

A

ðbε⋅N þ bκ⋅M þ bγ⋅QÞdAþ A0

Z

A

bu⋅€u dAþ I0

Z

A

bw⋅ €w dA�

Z

A

bu⋅b dA �
Z

Γt

bu t ds �
Z

A

bu⋅ndef � � Ksu⋅ndef � dA ¼ 0:
(11) 

In Eq. (11), KS is the linear area spring stiffness of the substrate, bðÞ
represents the virtual counterpart of ðÞ, A is the shell’s middle surface, Γt 
is a part of the middle surface boundary with prescribed external line- 
like boundary forces t ¼ t*h, and b ¼ bh are the external area-like 
body forces (note that b are body forces and t* are boundary trac-
tions). Acceleration of the middle surface is denoted as €u, where _ðÞ de-
notes the derivative of ðÞ with respect to time t. Acceleration of the shell 
director vector is thus €t ¼ €w, see Eq. (4). Moreover, A0 ¼ ρh and I0 ¼

ρh3=12 are the middle surface mass density and inertia of the shell di-
rector, respectively, where ρ is the mass density. 

The contribution of the elastic foundation is introduced in Eq. (11) 
through the area spring stiffness Ks acting in the direction of the normal 
to the deformed middle surface: 

ndef ¼
x0;α � x0;β

jjx0;α � x0;βjj
: (12) 

In this work, the substrate is modelled as a Winkler elastic founda-
tion using the expression for stiffness KS from Ref. [47]: 

KS ¼
1
2
Es

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
0 þ q2

0

q

R
;  (13)  

where Es ¼ Es=ð1 � ν2
s Þ is the plane-strain elastic modulus of the core, 

and p0 and q0 are the critical wrinkling wavelengths in the axial and 
circumferential direction, respectively. Note that a similar formula from 
Ref. [27] gives practically the same value of KS. According to Ref. [47], 
by knowing that the initial wrinkling pattern is always axisymmetric, we 
assume q0 ¼ 0 and obtain p0 by solving 

� 2þ
t2
f

6ð1 � ν2�R2p4
0 �

3R
6ð1 � ν2Þtf

Es

Ef
p0 ¼ 0;  (14)  

where Ef ¼ Ef=ð1 � ν2
f Þ. Authors in Refs. [23,44] propose a slightly 

different expression for the substrate stiffness, but we note that there is 
practically no difference in numerical values of the coefficient obtained 
by either of the formulae. 

We use the shell counterpart of St. Venant-Kirchhoff hyperelastic 
model for the constitutive relations. The following relations between the 
shell forces, Eq. (10), and the shell strains, Eq. (9), apply 

N ¼ Cmε; M ¼ Cbκ; Q ¼ Csγ;  (15)  

where 

Cm ¼ Cm
ð4�4ÞðE; h; ν; MSMÞ;

Cb ¼ Cb
ð3�3Þ

�
E; h3; ν; MSM

�
and Cs ¼ Cs

ð2�2ÞðE; h; ν; c;MSMÞ
(16) 

Here, E represents Young modulus, ν is Poisson ratio, c is shear 
correction factor, usually set to 5/6 for isotropic material and MSM is the 
abbreviation for the middle surface metrics. By inserting (15) into (11), 
one gets the following functional 

Gðbu; bw; u;w; €u; €wÞ ¼ Gintðbu; bw; u;wÞ � Gextðbu;cw;u; €u; €wÞ ¼ 0;  (17)  

where the first and the last integral in (11) contribute to Gint and the 
other integrals contribute to Gext (which thus includes inertial forces). 

2.2. Finite element 

Let the initial shell middle surface A be discretized by nel non- 
overlapping isoparametric finite elements with nen nodes, such that A �
A

nel
e¼1Ae ¼ Ah, where ðÞh denotes the finite element approximation of ðÞ

and A is the finite element assembly operator. Over the element domain 
Ae, the shell configuration at an initial time t0 is approximated as 

Xh
0ðξ; η; t0Þ ¼

Xnen

a¼1
Naðξ; ηÞX0aðt0Þ; nhðξ; η; t0Þ ¼

Xnen

a¼1
Naðξ; ηÞnaðt0Þ;  (18)  

where ðÞa are the nodal values, ξ ¼ ξ1 and η ¼ ξ2 are the convective 
coordinates over Ae, nen ¼ 4 and Naðξ; ηÞ are the bi-linear Lagrange 

Fig. 1. Shell model kinematics.  
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interpolation functions defined over the bi-unit square A e ¼ ½ � 1; 1� �
½ � 1; 1�, see e.g. Ref. [21]. Interpolation of the deformed configuration 
at time t > t0 over the element domain is attained via xh ¼ Xh

0þ uh and 
th ¼ nhþ wh, where 

uhðξ; η; tÞ ¼
Xnen

a¼1
Naðξ; ηÞuaðtÞ; whðξ; η; tÞ ¼

Xnel

a¼1
Naðξ; ηÞwaðtÞ: (19) 

In line with the Galerkin finite element method, the virtual dis-
placements bu and bw are approximated in the same manner as u and w in 
Eq. (19), 

buh
ðξ; ηÞ ¼

Xnen

a¼1
Naðξ; ηÞbua; bwh

ðξ; ηÞ ¼
Xnel

a¼1
Naðξ; ηÞbwa;  (20)  

where bua and bwa are nodal virtual displacements and nodal virtual 
difference vectors. To avoid the transverse shear locking, we rely on the 
assumed natural strain (ANS) concept of [18]. Moreover, to avoid the 
thickness locking, the strains εh

33;a are interpolated as 

εh
33ðξ; η; tÞ ¼

X4

a¼1
Naðξ; ηÞεh

33;aðtÞ: (21) 

The above interpolations over Ae are considered to get Gh
e , which is 

element’s contribution to the space-discrete version of functional (17) 

GhðtÞ ¼ A
nel
e¼1Gh

eðbua; bwa; uaðtÞ;waðtÞ; €uaðtÞ; €waðtÞÞ ¼ 0:  (22) 

The integrals over element’s area are evaluated by 2� 2 Gaussian 
quadrature rule as 

R

Ae

ð⋅ÞdA ¼
R

A e

ð⋅Þjhdξdη ¼
P4

G¼1WG
�
ð⋅Þjh

�
jðξG ;ηGÞ

, where 

WG is the Gauss point weight and jh ¼ Xh
0;1 � Xh

0;2 is the Jacobian (note 
that Xh

0;1 ¼ ∂Xh
0=∂ξ, etc.). 

2.3. Dynamic schemes 

Let us partition the time interval of interest ½t0; tN� into several sub- 

intervals [N
n¼0½tn; tnþ1�. Let ðÞa;n denote a given value of ðÞa at tn. The 

Newmark approximations [30] provide the relation between the nodal 
acceleration at tnþ1 and the nodal displacement at tnþ1 

_ua;nþ1 ¼
γ

βΔt
ðua;nþ1 � ua;nÞ �

γ � β
β

_ua;n �
γ � 2β

2β
Δt €ua;n;

€ua;nþ1 ¼
1

βΔt2 ðua;nþ1 � ua;nÞ �
1

βΔt
_ua;n �

1 � 2β
2β

€ua;n;

_wa;nþ1 ¼
γ

βΔt
ðwa;nþ1 � wa;nÞ �

γ � β
β

_wa;n �
γ � 2β

2β
Δt €wa;n;

€wa;nþ1 ¼
1

βΔt2 ðwa;nþ1 � wa;nÞ �
1

βΔt
_wa;n �

1 � 2β
2β

€wa;n;

(23)  

where Δt ¼ tnþ1 � tn and β, γ are constants. Nodal accelerations at tnþαm , 
and nodal displacements and external loading at tnþαf , are linear com-
binations of those at the beginning and at the end of time sub-interval 

€ua;nþαm ¼ αm €ua;nþ1 þ ð1 � αmÞ€ua;n; €wa;nþαm ¼ αm €wa;nþ1 þ ð1 � αmÞ €wa;n;

ua;nþαf ¼ αf ua;nþ1 þ
�
1 � αf

�
ua;n; wa;nþαf ¼ αf wa;nþ1 þ

�
1 � αf

�
wa;n;

bnþαf ¼ αf bnþ1 þ
�
1 � αf

�
bn; tnþαf ¼ αf tnþ1 þ

�
1 � αf

�
tn;

(24)  

where tnþαm ¼ αmtnþ1 þ ð1 � αmÞtn and tnþαf ¼ αf tnþ1þ ð1 � αf Þtn. 
Research on conservation of energy and momentum by the time- 
stepping algorithms, cf. e.g. Refs. [5,34] motivates the use of the same 
linear combination to approximate the internal forces at tnþαf 

Nh
nþαf
¼ αf Nh

nþ1 þ
�
1 � αf

�
Nh

n ¼ Cm�αf εh
nþ1 þ

�
1 � αf

�
εh

n

�
;

Mh
nþαf
¼ αf Mh

nþ1 þ
�
1 � αf

�
Mh

n ¼ Cb�αf κh
nþ1 þ

�
1 � αf

�
κh

n

�
;

Qh
nþαf
¼ αf Qh

nþ1 þ
�
1 � αf

�
Qh

n ¼ Cs�αf γh
nþ1 þ

�
1 � αf

�
γh

n

�
:

(25) 

Approximations (23)–(25) are used for the time-discretization of the 
functional (22) as  

Table 1 
Five of the six applied time-stepping schemes.  

Scheme αm  αf  β  γ  Order of accuracy ρ∞  

NTR 1  1 1
ðρ∞ þ 1Þ2  

3 � ρ∞
2ρ∞ þ 2  

2  ¼ 1  

BAM 2
ρ∞ þ 1  

1 1
4
ðαmÞ

2  αm �
1
2  

2 2 ½0;1�

HHT 1 2ρ∞
ρ∞ þ 1  

1
4
�
2 � αf

�2  3
2
� αf  

2 
2

�
1
2
;1
�

GAM 2 � ρ∞
1þ ρ∞  

1
1þ ρ∞  

1
4
ð1 � αf þ αmÞ

2  1
2
� αf þ αm  

2 2 ½0;1�
EMC 2 ¼ 1   

Gh ¼
Xnel

e¼1
Ghðbua; bwa; ua;nþ1;wa;nþ1Þ ¼

Xnel

e¼1

Z

Ae

�
bεh⋅Nh

nþαf
þ bκh⋅Mh

nþαf
þ bγh⋅Qh

nþαf

�
dAþ

Xnel

e¼1

Z

Ae

�
A0buh⋅€uh

nþαm
þ I0 bwh⋅ €wh

nþαm

�
dA

�
Xnel

e¼1

Z

Ae

�
buh⋅bnþαf þ bu

h⋅ndef ;h
nþαf

�
� KSuh

nþαf
⋅ndef ;h

nþαf

��
dA �

Xnel

e¼1

Z

Γt;e

buh ⋅tnþαf ds ¼ 0;

(26)   
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where accelerations are applied at tnþαm and loadings and internal forces 
are applied at tnþαf : The virtual strains in Eq. (26) are defined as 

bεh
¼ d

.
dε
�
εh� ua;nþαf þ εbua;wa;nþαf þ εbwa

��

ε¼0;

bκh
¼ d

.
dε
�
κh� ua;nþαf þ εbua;wa;nþαf þ εbwa

��

ε¼0;

bγh
¼ d

.
dε
�
γh� ua;nþαf þ εbua;wa;nþαf þ εbwa

��

ε¼0:

(27) 

Several implicit time-stepping schemes are obtained by varying the 
parameters αm, αf , β and γ in Eqs. (23)–(25). The latter are given in 
Table 1 as functions of the user-defined spectral radius of amplification 
matrix at infinity, ρ∞, which controls the amount of numerical dissipa-
tion. These functions are optimal in a sense that they minimize the low- 
frequency and maximize the high-frequency dissipation (more precisely, 
decaying the norm of algorithmic solution), see e.g. Refs. [15,48]. 
Smaller ρ∞ corresponds to a larger dissipation (note that schemes with 
ρ∞ ¼ 1 are non-dissipative). 

Eq. (26) yields a system of nonlinear equations for nodal displace-
ments at tnþ1, which we solve with the Newton-Raphson method. The 
details of the consistent linearization of the obtained system of nonlinear 
equations are omitted. The described finite element and implicit dy-
namics schemes were implemented in the computer code AceFEM, cf 
[24]. 

Besides the five schemes from Table 1, we also apply energy decaying 
(ED) scheme, see e.g. Refs. [1,8,32]. It is obtained by replacing Eq. (25) 
with 

Nnþ1=2 ¼ Cm½1=2ð εnþ1 þ εnÞ þ αEDðεnþ1 � εn Þ�;

Mnþ1=2 ¼ Cb½1=2ðκnþ1 þ κnÞ þ αEDðκnþ1 � κn Þ�;

Qnþ1=2 ¼ Cs½1=2ðγnþ1 þ γnÞ þ αEDðγnþ1 � γn Þ�;

(28)  

and by replacing Newmark approximations (23) with 

€ua;nþ1=2 ¼
_ua;nþ1 � _ua;n

Δt
; €wa;nþ1=2 ¼

_wa;nþ1 � _wa;n

Δt

_ua;nþ1 ¼
1

ðΔt=2þ βEDΔtÞ

�

ua;nþ1 � ua;n

�

� _ua;n

�

Δt
�

2 � βEDΔt
��

;

_wa;nþ1 ¼
1

ðΔt=2 þ βEDΔtÞ
ðwa;nþ1 � wa;n � _wa;nðΔt=2 � βEDΔtÞÞ;

(29)  

where αED ¼ βED 2 ½0; 0:5� controls dissipation of potential and kinetic 
energy (larger αED ¼ βED indicates larger dissipation). 

The range of numerical dissipation for the adopted schemes is 
illustrated in Fig. 2a), where a measure of dissipation is the spectral 
radius ρ, defined as ρ ¼ maxðjλijÞ; i ¼ 1; 2;3, where λi is the eigenvalue 
of the amplification matrix, see e.g. Refs. [15,20,48], and T is the time 
period of un-damped free vibration system with the frequency 2π=T. To 
realistically represent the physical behavior of the structure, low fre-
quencies (i.e. low Δt=T) should be algorithmically preserved (i.e. ρ ¼ 1 
should apply), while for high frequencies (i.e. high Δt=T), it is preferable 
to have limited numerical damping (i.e. ρ < 1), because high-frequency 
modes are insufficiently resolved by the spatial discretization and 
selected time step. In Fig. 2a) , GAM 0.6 denotes GAM with ρ∞ ¼ 0:6, see 
Table 1, ED 0.02 denotes ED with αED ¼ βED ¼ 0:02, etc. 

Our experience with buckling analysis of axially compressed cylin-
ders (with no core [28]) indicates that considerable algorithmic dissi-
pation is needed to capture the mode jumps (matching experimental 
results from Ref. [45]) in the post-buckling for GAM, HHT, BAM and ED 
schemes. Comparison of ED 0.02 and GAM 0.6 curves in Fig. 2a) shows 
that the latter starts with the damping at Δt=T � 0:1 and that the former 
starts even sooner. However, ED 0.02 damping is stronger in the 
intermediate-frequency range (up to Δt=T � 0:35), and weaker in the 
high-frequency range. GAM 0.8 and GAM 0.9 do not dissipate in the 
intermediate-frequency range, but rather only in the high-frequency 
range (after Δt=T � 0:3 and Δt=T � 0:9, respectively). The algorithmic 

Fig. 2. Properties of used time integration schemes. a) Spectral radius, b) Damping coefficient and c) Period elongation versus Δt=T.  
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Table 2 
Geometric and material data for cylinders CS1–CS4. Symbols E; ν; Ks; R; L and ρ denote the elastic modulus, Poisson ratio, spring coefficient, radius, length and 
density of the cylinder, respectively. Here, the subscript f refers to the film (shell) and s to the substrate.  

System Ef ½MPa� Es ½MPa�
Ks

�
N

mm3

�
νf  νs  tf ½mm� R  ½mm� L  ½mm� ρf 

h g
mm3

i
C  

CS1 2:16⋅104  1:8  127:6  0.4 0.48 10� 3  0:3  0:3  10� 3  0:43  

CS2 2:16⋅104  1:8  198:8  0.4 0.48 10� 3  0:113  0:15  10� 3  0:10  

CS3 2:16⋅105  1:8  196:3  0.4 0.48 10� 3  0:113  0:3  10� 3  0:01  

CS4 1:3⋅103  1:8  211:6  0.4 0.48 10� 3  0:2  0:2  10� 3  3:92   

Fig. 3. a) Finite element model (the springs are distributed across the entire inner surface). b) Loading function.  

Fig. 4. System CS1. a) Force-displacement response for ED and GAM. b) Force-displacement response for EMC, BAM, HHT and NTR. c) Deformed shell configurations 
at various points on the above diagrams. Patterns in configurations F–I are oscillating due to the un-damped vibrations. 
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damping is also illustrated in Fig. 2b) where a measure of numerical 
dissipation is damping coefficient ξ. Fig. 2b) clearly shows that ED 0.02 
exhibits damping for all frequencies and is stronger than the one of GAM 
0.6 up to Δt=T � 0:35. Damping coefficient for GAM 0.8 or GAM 0.9 is 
considerably smaller than for GAM 0.6 or ED 0.02. Fig. 2c) shows 
elongation of the time periods due to applied algorithm and dissipation, 
where T is the algorithmic time period. ED 0.02 elongation is the same as 
for NTR and EMC schemes, but smaller than the one of GAM 0.6. 

Note that according to Ref. [48], GAM, HHT and BAM may exhibit 
strong energy oscillations in the intermediate-frequency range, which 
was also observed in our numerical simulations presented in Section 3. 

3. Numerical examples 

We considered four cylinders, CS1-CS4, with geometric and material 
properties adopted from Ref. [44] (we collect them in Table 2 for con-
venience). The first three examples CS1-CS3 have C < Ccrit, and the CS4 
has C > Ccrit. The restraints ux ¼ uz ¼ wx ¼ wz ¼ 0 were applied on 
both ends of the cylinder, along with the prescribed axial displacement 
(see Fig. 3). The cylinder was at rest at t ¼ 0. No geometrical imper-
fections or perturbation forces were imposed. 

The aforementioned time-stepping schemes were used with an 
adaptive time-step function 

Δtmin � Δt ¼ BðInÞ Δtn � Δtmax ; B ¼

8
>>>><

>>>>:

2 �
�

In � 1
Io � 1

�2

; In < Io ;

1 �
1
2

�
In � Io

N � Io

�2

; In � Io ;

(30)  

where Δtn and In are the time-step and number of iterations from the last 
increment, respectively. The other parameters in Eq. (30) were selected 
as follows: I0 ¼ 8, N ¼ 25 (denoting the desired and maximal allowed 
number of incremental iterations, respectively), Δtmin ¼ 10� 8 s and 
Δtmax ¼ 0:01 s. If convergence was not achieved within 25 iterations, 
the increment was re-computed with Δt=2. The initial time step was Δ 
t ¼ 0:01 s and the convergence tolerance for the norm of the iterative 
displacement vector was set to 10� 12. 

In the following figures, uy denotes the imposed axial displacement 
and “reaction force” a sum of nodal axial reactions at one end. The colors 
on the deformed configurations relate to the radial displacements, which 
are magnified two times to show greater contrast between the wrinkling 
patterns (the same scaling applies for all configurations). 

3.1. System CS1 

We analyzed the CS1 system (C ¼ 0:43) using a 240� 120 element 
mesh, the loading time t0 ¼ 10 s and the damping factors (where 
applicable) ρ∞ ¼ 0:6 and αED ¼ βED ¼ 0:02. The results of the analyses 
depicting the reaction force as a function of the axial displacement and 
all identified patterns (A-I) according to different dynamic schemes, are 
shown in Fig. 4. 

Fig. 4a) shows that ED and GAM predicted multiple pattern transi-
tions in the post-buckling regime. ED predicted 5 pattern transitions and 
GAM predicted 3. The first pattern transition identified by ED corre-
sponds to the transition from a smooth (shown in configuration O in 
Fig. 4c), to an axisymmetric pattern (shown in configuration A) with 6 
waves (12 half-waves) along the length of the cylinder. Next, the tran-
sition from the axisymmetric pattern in configuration A to the (sym-
metric) diamond-like dimple pattern in configuration B is found, with 5 
bands of dimples along the length of the cylinder and 17 dimples along 
the circumference (comprising each band) of the cylinder. Both mode 
jumps are known from the experiments of Zhao et al. [47] and numerical 
analysis of Zhao et al. [47] and Xu and Potier-Ferry [44] on axially 
compressed shell-core cylinders. In addition to the two studies, our 

computational model based on ED reveals new mode jumps when the 
load is further increased. First, the dimple pattern in configuration B 
transforms into another diamond-like dimple pattern shown in config-
uration C, with a slightly different number of dimples. In this configu-
ration, we count 5 bands of dimples along the length and 15 dimples 
along the circumference of the cylinder. Similar to this mode jump, 
another one is observed at approximately uy ¼ 0:002 mm. At his load, 
the pattern jumps into a different (also symmetric) diamond-like dimple 
pattern, shown in configuration D, which has 3 bands of fully developed 
dimples at the mid-length of the cylinder and two bands of partially 
developed dimples near the boundary. Each band is comprised from 9 
dimples along the circumference of the cylinder which means a drastic 
decrease in the characteristic wavelength of the pattern. Interestingly, 
the mode jumps we find in this example are similar to those observed on 
cylindrical shells without substrate support (see e.g. Yamaki [45] for 
experimental and Lavren�ci�c and Brank [28] for numerical analysis). As 
far as we know, these results have not yet been recorded in the known 
literature on axially compressed shell-core cylinders. 

The final (fifth) mode jump that occurred after uy ¼ 0:003 mm was 
due to excessive vibrations that ED could not damp out (due to the very 
small Δt in this region), which eventually caused the analysis to fail 
because the time step became prohibitively small. 

The transition from a smooth to an axisymmetric pattern was also 
found by GAM (the obtained configuration is similar to A, not shown 
here). The next pattern GAM predicted is shown in configuration E. It 
was similar to the one found in configuration D by ED. We found that the 
pattern in configuration E has 4 bands of dimples along the length and 
10 dimples along the circumference of the cylinder (recall, configuration 
D has 3 fully and 2 half-developed bands with 9 dimples). We attribute 
the difference between the results of both schemes to different dissipa-
tive properties, as shown in Fig. 2a)–c). Similar to ED, also GAM was 
unable to damp out the excessive vibrations and failed around uy ¼

0:003 mm. 
EMC, BAM and HHT first found the axisymmetric wrinkling mode (as 

in configuration A) and then at uy � 0:0035 mm (see Fig. 4b) implied 
that the wrinkling mode should jump to the diamond-like pattern, as 
shown in configurations F, G and H in Fig. 4c). However, none of them 
could “freeze” the pattern due to strong vibrations that the schemes were 
unable to damp. Nevertheless, as the configurations F, G and H confirm, 
the precursors of the diamond-like wrinkling mode were found. NTR, on 
the other hand, predicted a jump, but the pattern remained axisym-
metric (and oscillating), as shown in configuration I. 

Next, we show in Fig. 5 the total energy (a sum of kinetic and po-
tential energies) versus time. At mode jumps, the total energy drops due 
to the redistribution of the membrane part of the potential energy to the 
bending part. This is not the case at the uncompleted final mode jump, 

Fig. 5. Total energy versus time for the CS1 system.  
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where the kinetic energy increases considerably due to the un-damped 
vibrations. It is interesting to note that despite the difference in con-
figurations D and E, the total energy for ED and GAM is very similar after 
GAM transitions to the diamond-like mode. 

3.2. System CS2 

We analyzed the CS2 system (C ¼ 0:1), using a mesh of 220� 100 
elements, the loading time t0 ¼ 10 s and the damping factors (where 

applicable) ρ∞ ¼ 0:6 and αED ¼ βED ¼ 0:02. The results, which are 
qualitatively similar to those of the CS1 case, are presented in Figs. 6 and 
7. 

Fig. 6a) shows that ED and GAM predicted multiple pattern transi-
tions in the post-buckling regime, 5 and 3, respectively, as before. All 
distinct patterns (configurations A-D) obtained by ED at different levels 
of imposed displacements are given in Fig. 6c). The characteristic 
findings are the same as in the CS1 case: i.e. a pattern transition from 
smooth (configuration O) to axial wrinkling (configuration A); pattern 
transition from axial to diamond-like dimples (configuration B); jumps 
between different diamond-like dimple patterns to obtain fewer and 
larger dimples (configurations C and D); configurations D (for ED) and F 
(for GAM) are almost identical but not the same (due to different algo-
rithmic properties, as shown in Fig. 2a)–c); after a certain displacement, 
in this case uy � 0:007 mm, both ED and GAM failed because of exces-
sive un-damped vibrations. 

Furthermore, the results for BAM, HHT and NTR (configurations H, I 
and J in Fig. 6c)) show that these schemes did not find any transitions 
from the axisymmetric to the diamond-like pattern (see also Fig. 6b). It is 
also interesting to note that non-dissipative EMC started with the tran-
sition to the diamond-like pattern (configuration G), but the process was 
not completed because of the high vibrations that led to an analysis 
failure due to Δt < Δtmin in adaptive algorithm (30). The high-frequency 
contamination is seen in the deformed configuration G. 

Fig. 7 shows the total energy versus time. An increase in total energy 
at the last uncompleted jump reflects an increase in kinetic energy due to 
strong vibrations. We note that ED and GAM have virtually the same 
total energy in the branches with configurations D and F, but there is a 
difference in levels of the membrane and bending parts of the potential 

Fig. 6. System CS2. a) Force-displacement response for ED and GAM. b) Force-displacement response for EMC, BAM, HHT and NTR. c) Deformed shell configurations 
at various points on the above diagrams. Pattern in configuration G is oscillating due to the un-damped vibrations. 

Fig. 7. Total energy versus time for the CS2 system.  
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energy (not shown). ED (configuration D) has a higher membrane en-
ergy and GAM (configuration F) has a higher bending energy, similar to 
what we observe in the CS1 case. 

3.3. System CS3 

We analyzed the CS3 system (C ¼ 0:01) using a mesh of 160� 200 
elements, the loading time t0 ¼ 10 s and the damping factors (where 
applicable) ρ∞ ¼ 0:6 and αED ¼ βED ¼ 0:02. The results are presented in 
Figs. 8 and 9. 

Fig. 8a) shows multiple post-buckling pattern transitions predicted 
by ED (more than in the CS1 and CS2 cases). All the patterns detected by 
ED are shown as configurations O-G in Fig. 8c). Note that the value of 
parameter C is less than critical, the same as in the first two cases, but 
much smaller. We first detect the transition from a smooth (configura-
tion O) to an axisymmetric wrinkling pattern (configuration A), fol-
lowed by the transition to the dimple mode wrinkling (from B to C), as 
predicted by the theory of Xu and Potier-Ferry [44] for sub-critical C. 
But in this case, we observe a two-step transition to the diamond-like 
dimple pattern across the entire surface. We observe that the dimple 
pattern localizes first at the mid-length of the cylinder (see configuration 
B), where the stiffness of the shell is slightly lower than at both edges, 
and spreads across the whole surface only at the next jump (see 
configuration C). Also note that the diamond-like mode presented in 
configuration C is symmetric with respect to the mid-length cross--
section of the cylinder, with 3 fully developed bands of dimples and 2 
bands (one at each edge) of onsetting dimples, each comprised of 6 
dimples in the circumferential direction. Multiple localized bucklings 

are then observed, with pattern D showing one of these stages. The 
cylinder reaches configuration E, in which 3 fully developed bands of 
dimples and 2 bands (one at each edge) of onsetting dimples are 
observed in the axial direction, each comprised of 5 dimples in the 
circumferential direction. Localized buckling is again observed in 
configuration F, and finally, mode G with an antisymmetric 
diamond-like pattern with 4 dimples in the axial and 4 in the circum-
ferential direction is found. 

Fig. 8a) also shows that a transition GAM began to form at uy � 0:005 
mm (see configuration H), but was never completed due to strong vi-
brations and the resulting failure of the analysis. For this reason, the 
obtained deformed configuration is not similar to either E or F. Ac-
cording to Ref. [48], GAM exhibits strong energy oscillations in the 
intermediate-frequency range, which may also occur in this example. 
Recall also that ED dissipates in the intermediate-frequency range, see 
Fig. 2a) and b) for comparison. 

In Fig. 8b) we present results of other schemes, BAM, HHT and NTR, 
which did not detect the pattern transition (as in the CS2 example), 
while non-dissipative EMC did, but only to start the transition to another 
axisymmetric mode (see configuration I), which was not completed due 
to un-damped vibrations. 

In Fig. 9 we show the diagrams of the total and kinetic energies, as 
well as the membrane and bending parts of the potential energy as a 
function of time (the transverse shear part of the potential energy is 
negligible). The kinetic energy makes up a very small part of the total 
energy. However, it increases suddenly at the time of a pattern transition 
until the vibrations associated with the transition are damped out. GAM 
and EMC show a large increase in kinetic energy at their failures when 

Fig. 8. System CS3. a) Force-displacement response for ED and GAM. b) Force-displacement response for EMC, BAM, HHT and NTR. c) Deformed shell configurations 
at various points on the above diagrams. 
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Fig. 9. Energy evolution in time for the CS3 system.  

Fig. 10. Configuration CS4. a) Force-displacement response. b) Deformed shell configurations at various points on the above diagrams.  

Table 3 
Critical load for axisymmetric buckling.  

Case CS1 CS2 CS3 CS4 

fcr ½N =mm� 0;060  0; 134  1; 27  0; 0130  
fcr;dy ½N =mm� ðfcr;dy =fcr %Þ 0;056 ð93 %Þ 0; 129 ð96 %Þ 1; 23 ð97 %Þ 0; 0115 ð88 %Þ
fcr;Xu ½N =mm� ðfcr;Xu =fcr %Þ 0;065 ð108 %Þ 0; 112 ð84 %Þ 0; 91 ð72 %Þ 0; 013 ð100 %Þ
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attempting to complete the mode jump, that was associated with strong 
vibrations (note also the oscillations of the membrane and the bending 
parts of potential energy at the same time). The membrane part of the 
potential energy is large in the initial axisymmetric buckling mode. It is 
interesting that for ED, the membrane part of the potential energy drops 
significantly at the first mode jump and remains almost constant, and 
that subsequent jumps are mainly related to the change of the bending 
part of the potential energy, which is consistent with the observations in 
Ref. [23]. 

3.4. System CS4 

We analyzed the CS4 system (C ¼ 3:92) using a mesh of 100� 200 
elements, the loading time t0 ¼ 10 s and the damping factors (where 
applicable) ρ∞ ¼ 0:6 and αED ¼ βED ¼ 0:02. The results are presented in 
Figs. 10. 

In contrast to the CS1-CS3 systems, system CS4 buckles only in 
axisymmetric patterns, as predicted by the theory, because the value of 
the parameter C is supercritical, cf. Eq. (1). In this case, all schemes 
(except EMC) predicted practically identical responses. In Fig. 10, we 
show 5 configurations (O-D) of the cylinder found at different imposed 
displacements uy. Only one transition of the pattern was found, as the 
initially smooth surface (configuration O) buckled into axisymmetric 
wrinkles. The buckling was gradual; first the axisymmetric wrinkling 
occurred at the edges of the system (see configuration A) and then 
gradually, with increase of compression, emanated towards the mid- 
length of the cylinder (configuration B) and fully develop in configu-
ration C. The same response of the shell was also reported in Ref. [44]. 
Moreover, at uy � 0:002 mm, the next jump was predicted by all tested 
dynamic schemes (except EMC), but only towards a new axisymmetric 
pattern (see configuration D). This transition was never completed due 
to strong oscillations. 

3.5. Critical axial force 

The critical axial force at the onset of the axisymmetric wrinkling 
fcr;dy for each configuration of the cylindrical shell can be found from the 
diagrams in Figs. 4, 6, 8 and 10. We list the values we find in Table 3 and 
compare them with the analytical critical axial force fcr ¼ σcrtf , where 
σcr is the critical stress, calculated from the following expression 

σcr ¼ Ef

"
1
p2

0
þ

t2
f p2

0

4c2R2 þ
3REs

2c2tf Ef p0

#

;  (31)  

see e.g. Ref. [47] for the derivation. Here, c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 � ν2Þ

p
. According to 

Ref. [47], by knowing that the initial wrinkling pattern is always 
axisymmetric, one can assume q0 ¼ 0 and obtain p0 by solving Eq. (14). 

In addition to the analytical and our numerical values of the critical 
buckling force, Table 3 also contains the results obtained by Xu and 
Potier-Ferry [44] by their numerical analysis (denoted as fcr;Xu). It can be 
seen that the results for fcr, fcr;dy and fcr;Xu given in Table 3 are in good 
agreement and that our prediction is on average slightly better than that 
of [44]. 

4. Conclusions 

We have shown that the geometrically exact, rotation-less, nonlinear 
shell finite element on an elastic foundation and the implicit structural 
dynamics can be successfully applied to investigate primary buckling 
and secondary mode transitions in the post-buckling regime of curved 
shell/substrate composites. In this study, six time stepping schemes were 
applied. Three of them (GAM, BAM and HHT) fall into the class of 
generalized-α methods with numerical dissipation in the high frequency 
range. One of them, ED falls into the class of energy-decaying schemes 
with controllable dissipation that guaranties positive incremental 

dissipation (which is not the case for generalized-α methods). The last 
two are the classic Newmark trapezoidal rule (NTR) and the energy- 
momentum conserving scheme (EMC). We have shown that a combi-
nation of an ED scheme and an adaptive time-stepping algorithm com-
prises an efficient solution procedure for this remarkably difficult (and 
highly sensitive) problem. However, other schemes (except GAM in 
some cases) cannot make a definite prediction of the pattern due to 
insufficient damping of strong high-modes-vibrations at mode jumps. 
The classical implicit schemes, HHT, BAM and NTR, which are default 
schemes in commercial finite element codes, have not been successful in 
solving the problems considered in this work (the same applies to the 
non-dissipative EMC scheme). 

Our numerical experiments on four shell composites (named as CS1- 
CS4) showed that our computational model can reproduce experimen-
tally observed phenomena from Ref. [47] and numerical predictions 
from Ref. [44]. A good agreement between the theoretical [47], nu-
merical [44] and the results of our computations was found for both the 
primary buckling load and the pattern prediction. We confirmed that, as 
predicted in the two studies, the system with the supercritical value of 
the critical parameter C (in our case CS4) has only one axisymmetric 
wrinkling mode, whereas for the subcritical C (in our case CS1-CS3) a 
system should show first the transition from the initially smooth to the 
axisymmetric wrinkling mode and, when the load is further increased, 
the secondary transition to the diamond-like wrinkling mode. 

In addition to these known results, our numerical model shows the 
existence of multiple mode jumps in the post-buckling regime. In the 
CS3 configuration, for example, we observe that the secondary transi-
tion is gradual. First, the dimple diamond-like wrinkling pattern is 
localized at the mid-length of the shell and then gradually spreads to-
wards the edges of the cylindrical system. For CS1 and CS2 configura-
tions, our computational model based on the ED scheme reveals new 
mode jumps when the load is further increased. We discover that the 
first observed diamond-like dimple pattern jumps with each jump into 
diamond-like dimple patterns with a smaller number of dimples. The 
difference between the first and last dimple mode can be significant (see 
CS1 in Fig. 4c). It is interesting, that the mode jumps we found are 
similar to those found on cylindrical shells without substrate support, 
see e.g. Ref. [45] for experimental and [28,52] for numerical analyses. 
To our best knowledge, these results have not yet been recorded in the 
known literature on axially compressed cylindrical shell/substrate 
composites, neither experimentally nor numerically. 

In conclusion, we have shown in this work that 3D (static) compu-
tational models of [22,44,47] can be complemented by a relatively 
simple and fast procedure that provides practically the same results in 
pattern prediction. It can also predict mode jumps in the far 
post-buckling regime, which the authors of the previously mentioned 
studies have not observed. Of course, only experiments can confirm our 
numerical prediction of mode jumps. To our best knowledge, no (very) 
precise experiments have been designed so far to test post-critical mode 
transitions for axially loaded cylinders on soft substrates. The experi-
mental research in Ref. [47] was pioneering, but it mainly focused on 
relating different wrinkling patterns with geometrical and material 
properties. Due to fabrication limitations which raise imperfections, it 
would be quite a challenge to design an experiment to observe all the 
transitions. However, from the similarity between our results and 
several sharp jumps associated with mode transitions reported in clas-
sical texts on experiments on axially loaded cylinders without an inner 
core, see e.g. Ref. [45], we speculate that the mode transitions found 
with our computational model are real. 
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