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We introduce a consistent displacement‐based finite element formulation for the analysis of laminated compos-
ites with nonlinear interlaminar constitutive law. The computational model includes the nonlinear Reissner
beam for modelling the bulk material and continuously distributed system of nonlinear springs to describe
the connection between layers. We can introduce general functions for describing the stiffness of springs.
Therefore, our model is able to describe a variety of physical phenomena, such as friction between layers, con-
tact, cohesive forces, etc. The displacement field on which the stiffness function depends upon is expressed in a
local, deformed basis. Distributed force which results from the interaction between layers, is introduced into
the governing equations in order to avoid the need for additional interface elements and to simplify the numer-
ical solution method. Precise experiments on thick partially delaminated beam, solid beam, shear lap joint
beams and film‐substrate composite as well as comparison with the results from the literature, demonstrate
the efficiency and versatility of the proposed numerical procedure.
1. Introduction

There is a growing demand for composite materials in many
branches of industry, mainly due to their advantageous strength‐to‐
mass ratio and their advantages in the production process. These mate-
rials have many applications in mechanical and structural engineering,
e.g. for load‐bearing elements made of steel‐concrete [1], wood‐steel
[2], fiber‐reinforced [3] and woven materials [4] that form entire
structures or parts of bridges, roofs, hulls, panels, etc. As their use
increases, so does the need to understand their response to mechanical
loads and their failure mechanisms, including phenomena such as
material interactions, bonding and complex crack propagation.
Nevertheless, a review of the literature shows that even symmetric
problems, such as the Mode I opening case of a double cantilever beam
(DCB), can be challenging for state‐of‐the‐art models, see e.g. [5–7].

The DCB test is an entry‐level case for modeling delamination in
laminated structures, since its loading induces only normal cohesive
forces in the process zone. From an experimental point of view, how-
ever, a perfect bond is difficult to achieve due to technological limita-
tions. In order to account for the effects of fabrication imperfections,
such as local air entrapment, lack of resin, inclusions, etc., several
cohesive zone models (CZM) have been developed since Barenblatt
[8] initially proposed an approach with distributed stress over a finite
region near the crack tip and Hillerborg et al. [9] made their finite ele-
ment implementation. Cubic polynomial [10], trapezoidal [11],
smoothed trapezoidal [12], bilinear softening [13], exponential [14]
and linear softening [6] cohesive traction‐separation models may have
equal critical strength and critical energy release rate but each of them
will yield a different global response during delamination [15].
However, it is assumed that the influence of CZM parameters is more
important than the cohesive model function [16]. With this in mind,
Alfano et al. [16] present how different values of cohesive strength
and critical energy release rate can be chosen for trapezoidal, bilinear
and exponential cohesive models to obtain similar results.

The use of all available mathematical models for cohesive zone
modeling requires the prior experimental determination of realistic
values of adhesive material parameters. Since the critical energy
release rate and the critical cohesive strength are difficult to measure,
inverse analyses are very often used to tailor the traction‐separation
relation to a specific experimental load‐displacement curve. Several
approaches are used to tackle this problem, e.g. virtual crack‐closure
method [17], path independent J‐integral [18], virtual crack extension
[19], the stiffness derivative [20] or simply by calibrating the CZM
parameters of an idealized cohesive model until a satisfactory
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Fig. 1. Initial and deformed shape of a beam element subjected to external
nodal and distributed loads.
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agreement between measurements and numerical predictions is
obtained, see e.g. works by Liljedahl et al. [21], Alfano et al. [16]
and Blackman et al. [22]. Moreover, cohesive model parameters (pre-
dicted, derived or measured) are often implemented in finite element
code, either by embedding a strong discontinuity in 2D solid elements
(see e.g. the work of Manzoli and Shing [23]) or, most commonly, by
deriving unconventional finite elements; using CZMs in an interface
element formulation. Chen et al. [10], Scheider and Brocks [12],
Alfano and Crisfield [6], Camanho et al. [24], Turon et al. [25,26],
Lorentz [27], etc. derived additional continuous interface elements
with mixed‐mode capabilities for the use in conjunction with solid ele-
ments. The cohesive elements share common nodes with adjacent
upper and lower bodies to carry loads between them. During analysis,
the deformation of an element determines its constitutive behavior
from initiation of damage to potentially complete failure of the con-
nection. Such formulations usually use two numerical integration pro-
cedures: Gaussian quadrature rules for elements representing bulk
material and Newton‐Cotes integration method for interface elements
when a nonlinear traction‐separation law is considered. This elimi-
nates unwanted oscillations of the traction field and provides addi-
tional manipulation space for fine tuning the simulation and using
more integration points in the interface layer.

Following the assumption that the adhesive has lower yielding
properties than the base material, one can efficiently model laminated
structures with beam theories. The choice of the kinematic model
plays an important role in computational efficiency, as discussed by
Biel and Stigh [28]. For example, they showed that the calculation
of the critical cohesive energy depends more on beam theory than
on the parameters of the bilinear cohesive model. They also high-
lighted the significant differences in the solutions obtained by the
Euler‐Bernoulli beam model and the 2D plane‐stress model.
Although the beam model generally cannot capture all the deforma-
tion modes that occur in a 2D plane‐stress model, Škec et al. [29,30]
demonstrate a good agreement between the Timoshenko beam model
and the 2D plane‐stress model for their set of problems. Williams [31],
de Morais [32] and Sun and Pandey [33] use a linear Timoshenko
beam on an elastic foundation with linear stiffness characteristics in
extension and rotation for use in DCB simulation. Sankar [34] derives
a geometrically linear, shear deformable beam element with offset
nodes, which is used in the DCB example with discrete nodal connec-
tors for axial and transverse displacements and rotations of the upper
and lower beams. Based on the Euler‐Bernoulli beam theory, Roche
et al. [35] developed a finite element for laminated beams with inter-
layer slip. Čas et al. [36] and Kryžanowski et al. [37] used shear‐stiff
Reissner kinematic equations to formulate a two‐layer composite beam
element and described the interlayer slip in a deformed setting. Their
formulation was updated by Kroflič et al. [38] by adding the uplift
between the layers to the model. In addition, Schnabl and Planinc
[39] also consider both slip and uplift between the two layers of a com-
posite column, but consider a fully nonlinear Reissner beam model.

In the above beam‐based models, continuous layers of springs
between elements or discrete springs located at the nodes are used
to describe the interface between the layers. If the continuous or
smeared model is introduced in the main equations, more effort is
required to construct the tangent stiffness matrix, as opposed to the
discrete spring model, which is treated the same as external forces
and added to the construction when the stiffness matrix is already
formed. However, to achieve the same effect, the use of discrete model
requires more degrees of freedom than the smeared model. As shown
by Carpinteri and Massabo [40] and Rots [41] for the case of two‐
dimensional crack propagation in concrete, both approaches generate
the same global results.

In this work, we present a finite element formulation of a compos-
ite beam that allows a more accurate modeling of the contact interac-
tions between the layers. The beam formulation is based on the
geometrically exact Reissner beam theory, while the interactions
2

between the layers are described by sufficiently smooth functions
along the length of the beam. These interactions vary from rigid to
allowable interlayer slip, lift or both. The function of the interaction
(stiffness) can be continuous or discontinuous and depends on the rel-
ative normal and tangential displacements. The uncoupled displace-
ment field used in the stiffness function is appropriately rotated to
account for the large displacements and large rotations. The details
are presented in Section 2, where the governing equations, the elastic
foundation function and the interface stiffness relations, along with
linearization and the construction of the tangent stiffness matrix are
derived. Section 3 contains the descriptions of all experiments we have
performed. These include: thick cantilever beam experiment, delami-
nated beams, single lap joint shear test and thin film bonded to a thick
compliant substrate. The results found in the available literature, such
as for a composite beam with interlayer slip, axially loaded delami-
nated beam and double cantilever bending test, are compared with
our numerical results and discussed in Section 4. Finally, Section 5
summarizes the work done in this study and provides some ideas for
future work.

2. Theoretical formulation

We apply the Reissner beam theory [42] to model delamination
and complex contact interactions between layers in thick composite
beams within finite extensional, bending and shear strains. We limit
our analysis to beams made from laminae of isotropic, homogeneous
and linearly elastic material and assume that the cross‐section of the
beam remains planar during loading, while the centroid axis is exten-
sible. We also assume that the beam is initially straight and rotated by
angle φ0 in the global coordinate system, as shown in Fig. 1.
Displacement fields in two principal directions are denoted as u and
w, while φ represents the rotation of the cross section. The governing
equations of this problem are, [42]:

• kinematic equations relating displacements and strains:
cosφ0 þ u0 ¼ ð1þ ɛÞ cosφ� γ sinφ; ð1Þ
sinφ0 þ w0 ¼ �ð1þ ɛÞ sinφþ γ cosφ; ð2Þ
φ0 � φ0

0 ¼ κ: ð3Þ
• equilibrium equations relating internal and external forces and
moments:

R0
x þ px ¼ 0; ð4Þ

R0
y þ py ¼ 0; ð5Þ

M0 þ ð1þ ɛÞQ � γN þmz ¼ 0; ð6Þ
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where Rx and Ry are resultant forces expressed in global basis

Rx ¼ N cosφ� Q sinφ; ð7Þ
Ry ¼ N sinφþ Q cosφ: ð8Þ

• constitutive equations for linear elastic material relating stress
resultants and strains:

Nc ¼ E
Z
A
ðɛ þ yκÞdA; ð9Þ

Qc ¼ GAsγ; ð10Þ
Mc ¼ E

Z
A
yðɛ þ yκÞdA: ð11Þ

Here, symbol 0 represents a derivative with respect to the arc length
parameter x. With ɛ; γ and κ we denote the extensional, shear and
bending strain, respectively, px; py and mz are the external distributed
forces and moment per unit length, N and Q are the internal normal
and shear force expressed in a local basis, whereas Rx; Ry and M
are the stress resultant forces and moment.

Expression ½S� ¼ ½D� ½ε� represents a matrix form of Eqs. (9) and
(11), where the strain vector ½ε� ¼ ɛ; γ; κ½ �T and the constitutive forces
and moment vector ½S� ¼ Nc;Qc;Mc½ �T are connected to the constitu-
tive matrix ½D� for linear elastic material as follows:

½D� ¼
EA 0 �ESy
0 GAs 0
�ESy 0 E Iz

2
64

3
75: ð12Þ

Here, E and G are Young’s and shear modulus, respectively. The
symbol As denotes effective shear area, Sy the first moment of area
and Iz the second moment of area. Note that in the case of a composite
beam, Sy is not zero for a generic lamina, because the centroid axis
does not coincide with the neutral x‐axis.

2.1. Finite element method

Unknown displacement functions u; w and cross section rotation φ
are interpolated with a linear combination of discrete values
Ui; Wi; ϕi and shape functions PiðxÞ; i∈ f1; . . . ; ng. Derivatives with
respect to the arc‐length parameter x and variations are expressed as
follows:

uðxÞ≈∑
n

i¼1
PiðxÞUi; u0ðxÞ≈∑

n

i¼1
P0
iðxÞUi; δuðxÞ≈∑

n

i¼1
PiðxÞδUi; ð13Þ

wðxÞ≈∑
n

i¼1
PiðxÞWi; w0ðxÞ≈∑

n

i¼1
P0
iðxÞWi; δwðxÞ≈∑

n

i¼1
PiðxÞδWi; ð14Þ

φðxÞ≈φ0 þ ∑
n

i¼1
PiðxÞϕi; φ0ðxÞ≈∑

n

i¼1
P0
iðxÞϕi; δφðxÞ≈∑

n

i¼1
PiðxÞδϕi: ð15Þ

The nodal points xi; i∈ f1; . . . ; ng, are equally spaced along the
length of a finite element. Standard Lagrange polynomials are used
for shape functions, while integrals are solved numerically using a
Newton‐Cotes procedure, in which the integration points coincide
with nodes of the finite element. The influence of the numerical inte-
gration rule is well explained in the work of Alfano and Crisfield [6],
and the reason for not using the Gaussian quadrature rules will be evi-
dent in later examples.

A finite element can be subjected to external distributed forces
px; py and moment mz and nodal forces and moments
Si; i∈ f1; . . . ;6g, as shown in Fig. 1.

Finite element equations are derived from the principle of virtual
work, [42]:Z le

0
ðNcδɛ þ Qcδγ þMcδκÞdx ¼

Z le

0
ðpxδuþ pyδwþmzδφÞdx þ ∑

6

k¼1
SkδUk:

ð16Þ
3

Variations of the discretized approximation equations for the dis-
placement and rotation field (13)–(15) are used in the principle of
the virtual work (16) and arranged by the primary unknowns:

∑n
i¼1

R le
0 RxP0

i � pxPi
� �

dx
n o

δUiþ

þ∑
n

i¼1

R le
0 RyP0

i � pyPi

� �
dx

n o
δWiþ

þ∑
n

i¼1

R le
0 McP0

i þ ðsinφ0 þ w0ÞRx � ðcosφ0 þ u0ÞRy �mz
� �

Pi
� �

dx
n o

δϕi ¼
¼ S1δU1 þ S2δW1 þ S3δϕ1 þ S4δUn þ S5δWn þ S6δϕn:

ð17Þ
Following the fundamental theorem of the calculus of variations,

we divide Eq. (17) into sub parts presenting equilibrium in appropriate
directions. These are later solved in every beam node, indexed with
i; i∈ f1; . . . ; ng,

ie ¼
Z le

0
ðRxP0

i � pxPiÞdx � Sxi ¼ 0; ð18Þ

nþie ¼
Z le

0
ðRyP0

i � pyPiÞdx � Syi ¼ 0; ð19Þ

2nþie ¼
Z le

0
ðMcP0

i þ ½ðsinφ0 þ w0ÞRx � ðcosφ0 þ u0ÞRy �mz�PiÞdx � Sφi ¼ 0:ð20Þ

With nodal solutions of primary unknowns at hand, one can calcu-
late the beam’s deformation state using kinematic Eqs. (1) and (3).

2.2. Beam on elastic foundation

To model the elastic foundation as a distributed (smeared) layer of
springs, we add a constraining relation to the main element equations.
The elastic foundation is defined in two directions and depends on the
related displacement fields, where its stiffness follows the prescribed
spring coefficient function in two principal directions f xðuÞ and
f yðwÞ. As such

ie ¼
Z le

0
RxP0

i � px � hxðuÞð ÞPi
� �

dx � Sxi ¼ 0; ð21Þ

nþie ¼
Z le

0
RyP0

i � py � hyðwÞ
� �

Pi

� �
dx � Syi ¼ 0; ð22Þ

where

hxðuÞ ¼
Z u

0
f xðûÞdû; ð23Þ

hyðwÞ ¼
Z w

0
f yðŵÞdŵ; ð24Þ

are the foundation stiffness functions in both directions.
Eqs. (20)–(22) are now linearized with respect to the main discrete

unknowns of the problem using a directional derivative.

jδe¼ ∑n
i¼1

R le
0 b1P0

iP
0
jþ f xðuÞð ÞPiPj

� �
dxδUiþ

þ∑
n

i¼1

R le
0 �b3P0

iP
0
j

� �
dxδWiþ

þ∑
n

i¼1

R le
0 b3ðcosφ0þu0Þþb1ðsinφ0þw0Þ�Ry

� �
Piþb5P0

i

� �
P0
j

� �
dxδϕi;

ð25Þ

nþjδe¼ ∑n
i¼1

R le
0 �b3P0

iP
0
j

� �
dxδUiþ

þ∑
n

i¼1

R le
0 b2P0

iP
0
jþ f yðwÞ
� �

PiPj

� �
dxδWi

þ∑
n

i¼1

R le
0 �b2ðcosφ0þu0Þ�b3ðsinφ0þw0ÞþRx½ �Piþb4P0

i

� �
P0
j

� �
dxδϕi;

ð26Þ
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2nþjδe¼ ∑n
i¼1

R le
0 b3ðcosφ0þu0Þþb1ðsinφ0þw0Þ�Ry

� �
Pjþb5P0

j

� �
P0
i

� �
dxδUiþ

þ∑
n

i¼1

R le
0 �b2ðcosφ0þu0Þ�b3ðsinφ0þw0ÞþRx½ �Pjþb4P0

j

� �
P0
i

� �
dxδWiþ

þ∑
n

i¼1

R le
0 ½b2ðcosφ0þu0Þ2þb1ðsinφ0þw0Þ2þðcosφ0þu0Þð2b3ðsinφ0þw0Þ�RxÞ�
�

�Ryðsinφ0þw0Þ�PiPjþð�b4ðcosφ0þu0Þþb5ðsinφ0þw0ÞÞðP0
iPjþPiP0

jÞþb6P0
iP

0
j

�
dxδϕi:

ð27Þ
Constants bk; k∈ f1; . . . ;6g, contain constitutive tangent matrix

components C11; C12; C21 and C22, as derived in e.g. [43]. For linear
elastic material, these coefficients are calculated as follows:

C11 ¼ @Nc

@ɛ
¼ E

Z
A

@

@ɛ
ðɛ þ zκÞdA ¼ EA; ð28Þ

C12 ¼ @Nc

@κ
¼ E

Z
A

@

@κ
ðɛ þ zκÞdA ¼ E

Z
A
zdA ¼ ESy ; ð29Þ

C21 ¼ @Mc

@ɛ
¼ E

Z
A

@

@ɛ
ðzɛ þ z2κÞdA ¼ E

Z
A
zdA ¼ ESy ¼ C12; ð30Þ

C22 ¼ @Mc

@κ
¼ E

Z
A

@

@κ
ðzɛ þ z2κÞdA ¼ E

Z
A
z2dA ¼ EIy : ð31Þ
Fig. 2. Undeformed and deformed pair of connected elements A and B.
2.3. Connected elements

We also add penalty stiffness relations in two directions to our for-
mulation. Here, the elements are connected only to neighboring ele-
ments. More precisely, pairs of elements A and B are defined at the
start of the procedure and remain unchanged throughout the loading
process, whereas the intensity of a bond is related to the relative dis-
placement difference

ΔuAjBg ¼ uA � uB; ð32Þ

ΔuBjAg ¼ uB � uA;

ΔwAjB
g ¼ wA � wB; ð33Þ

ΔwBjA
g ¼ wB � wA:

For the accurate description of large rotations, the reaction forces
are rotated with respect to the local/deformed basis G. The global,
fixed basis g is defined with two unit‐length vectors g ¼ fg1; g2g, while
the local basis is represented as G ¼ fG1ðxÞ;G2ðxÞg. The local basis
varies with each material point x; x∈ ½0; le�, and consequently with
respect to the local rotation φðxÞ. The transformation between the
two bases is obtained through the use of a 2� 2 rotation matrix
RðφÞ: for an arbitrary vector a expressed in global basis aG ¼ RTag or
in local basis ag ¼ RaG. We write the stiffness function in vector form

hGðΔrGÞ ¼
R ΔrG
0 fGðΔr̂GÞdΔr̂G, where fGðΔrGÞ is a function of the smeared

spring coefficient with respect to the relative displacement difference
vector ΔrG; ½ΔrG� ¼ ½ΔuG;ΔwG�T in local basis and

ΔuG ¼ Δug cosðφPÞ þ Δwg sinðφPÞ; ð34Þ
ΔwG ¼ �Δug sinðφPÞ þ Δwg cosðφPÞ: ð35Þ

To ensure that both elements (A and B) experience the same reac-
tion forces, a mid‐plane between the elements is defined as
φP ¼ ðφA þ φBÞ=2, depicted with red in Fig. 2. Next, we express the
interface functions in the global basis and insert them into the govern-
ing equations,

hxðΔugÞ ¼ hTðΔuGÞ cosðφPÞ � hNðΔwGÞ sinðφPÞ; ð36Þ
hyðΔwgÞ ¼ hTðΔuGÞ sinðφPÞ þ hNðΔwGÞ cosðφPÞ: ð37Þ

Here and in the rest of the paper, normal and tangential compo-
nents will be denoted as subscripts N and T.
4

Eqs. (21) and (22) now take the form:

ie ¼
Z le

0
RxP0

i � px � hxðΔugÞ
� �

Pi
� �

dx � Sxi ¼ 0; ð38Þ

nþie ¼
Z le

0
RyP0

i � py � hyðΔwgÞ
� �

Pi

� �
dx � Syi ¼ 0 ð39Þ

and linearized Eqs. (32) and (33) are

δΔug ¼ δuA � δuB; ð40Þ
δΔwg ¼ δwA � δwB: ð41Þ

Eqs. (36) and (37) now yield

δhxðΔugÞ ¼ δhTðΔuGÞ cosφP � δhNðΔwGÞ sinφP

�ðhTðΔuGÞ sinφP þ hNðΔwGÞ cosφPÞδφP ¼
¼ f TðΔuGÞ cosφPδΔuG � f NðΔwGÞ sinφPδΔwG�

�ðhTðΔuGÞ sinφP þ hNðΔwGÞ cosφPÞδφP;

ð42Þ

δhyðΔwgÞ ¼ δhTðΔuGÞ sinφP þ δhNðΔwGÞ cosφP

þðhTðΔuGÞ cosφP � hNðΔwGÞ sinφPÞδφP ¼
¼ f TðΔuGÞ sinφPδΔuG þ f NðΔwGÞ cosφPδΔwGþ

þðhTðΔuGÞ cosφP � hNðΔwGÞ sinφPÞδφP;

ð43Þ

where δΔuG and δΔwG are obtained from Eqs. (34) and (35), now in the
form

δΔuG ¼ δΔug cosφP þ δΔwg sinφP þ ΔwGδφP; ð44Þ
δΔwG ¼ �δΔug sinφP þ δΔwg cosφP � ΔuGδφP: ð45Þ

The complete variations of the main Eqs. (38) and (39) with respect
to the discrete nodal unknowns are obtained by combining Eqs. (40)–
(43), (45). We list them in Appendix.

3. Practical experiments

To test our computational method, we performed precision exper-
iments on various elastic structures, including a thick (solid) cantilever
beam, a delaminated thick cantilever beam, a single lap joint and a
thin film on a soft substrate.

3.1. Thick cantilever beam

A solid beam was fabricated from two component silicone‐based
elastomer Elite Double 32 from Zhermack. After the liquid mixture



Fig. 3. Experiments on thick cantilever beam subjected to self-weight. a)
snapshot of a deformed configuration at length L ¼ 260 mm. White lines were
painted onto the beam before deformation. Superimposed in red lie the results
of the numerical model. b) comparison between experimentally and numer-
ically obtained horizontal displacements u, vertical displacements w and
rotations ϕ.
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was poured into the mold (size 320� 40� 20 mm), left at the room
temperature for approximately half an hour to solidify, it was left in
the oven for 12 h at 60 °C to cure. Then a network of lines, represent-
ing the beam’s centerline and the perpendicular cross‐sections was
painted on the undeformed beam with a thin white marker. The beam
was divided into thirteen 20 mm segments and the intersections
between the centerline and cross‐sectional lines were marked with
small white circles.

Then we performed cantilever bending tests to measure the Young
modulus of the beam for 6 different lengths by changing the position
of the clamp. The clamp consisted of two solid aluminium blocks that
were bolted together and fixed the beam in the middle. To prevent the
beam from being compressed by the two blocks, rigid spacers of the
same thickness as the beam were placed between them. In Fig. 3a)
we show a photo of the cantilever beam with the length L ¼ 260
mm. For each of the 6 tests, we took a snapshot of the deformed con-
figuration and traced out the vertical displacement at the free end of
the beam with the use of Image Processing Toolbox in Matlab, [44].
The obtained displacement was then used as input data in our numer-
ical model to determine the Young modulus. From the six measure-
ments we obtained E ¼ 1:369� 0:05 Mpa. With this value of E we
calculated the displacements and rotations for each segment of the
beam. Note that here the Young and shear moduli were assumed for
homogeneous, isotropic and linear elastic material that is nearly
incompressible (as commonly accepted in the literature for this
rubber‐like material). Therefore we used ν≐0:5.

The results, plotted in Fig. 3a) in solid red lines and circles, show a
very good agreement between the experiment and the numerical com-
putations. In fact, all 6 considered lengths and results for the end dis-
placements and rotations listed in Table 1 show a very good agreement
between experiments and numerics. On average, the relative error of
end displacement in the vertical direction is only 0:84%, while the rel-
ative error for the horizontal end displacement and end rotation is
1:943% and 1:901%, respectively (see Table 2 for details).

To further demonstrate the efficiency of our computational model,
we plot three diagrams that show horizontal and vertical displace-
ments and rotation of all segments as a function of the 13 nodal posi-
tion on the centerline in Fig. 3b) for both, experiments and
computations. White lines from the experiment were traced out via
Matlab Image Processing Toolbox. As we can see, a remarkably good
agreement is obtained.

3.2. Delaminated cantilever beam

Using the same procedure as in the previous example, we fabri-
cated a beam with a delaminated region as illustrated in Fig. 4a).
The same mold as for the thick solid beam and a 1 mm thick acrylic
spacer were used to make the delaminated region with rectangular
geometry. The geometric details for the beam are given in Table 3
and the material properties are taken from the previous example.

We have divided the beam into 24 segments: 2 and 4 segments for
the solid (undelaminated) region (in the left and right), and two times
9 segments for both layers (top and bottom) in the delaminated region.
The same structure was maintained in the numerical model, where
each segment was discretized by a 5‐node finite element. Figure 4b)
shows the finite element discretization of the domain. The external
nodes shared by the successive elements are colored red, except at
the left and right edges of the delamination. At these two points (col-
ored blue), three finite elements share a common external node. The
external right node of element 2 and external left nodes of elements
3 and 12 are the same (blue circle on the left) and the external nodes
of elements 11 and 20 and external left node of element 21 are the
same (blue circle on the right). Here, elements 1, 2 and 21–24 have
a zero first moment of area, whereas nodes 3–11 and 12–20 have a
non‐zero first moment of area. Between these elements we simulate
the contact with a bilinear characteristic. A high spring stiffness is
5

prescribed when the layers are together and zero stiffness when they
are separated.

Depending on the up/down orientation, two different experiments
were performed on the beam. Figures 5a) and c) show snapshots of the
deformed beam configurations with partial delamination between the
two layers in two orientations (up and down). In regions where the
two layers are in contact, we applied plenty of silicone oil to reduce
friction.

In red color we show numerically predicted displacement points
and lines that follow the centerlines of both layers, undelaminated
regions and the 16 cross‐sections. The same points and lines were ini-
tially marked with a white marker on the undeformed beam. Again,
there is a very good agreement between experiments and computa-
tions, as shown in Figs. 5a) and c). To quantify these results, white
points and lines were traced out from the photos, as in the previous
example and plotted alongside the numerically obtained ones. As
can be seen from Fig. 5 good agreement between experimental and
numerical results is obtained.

3.3. Single lap joint shear test

The single lap joint shear test is a standard test for adhesives in
which the lap shear strength varies along the thickness, toughness
and overlap length of the adhesive. To allow a direct comparison
between the experimental results and the results of our numerical
model, we simplified our experiment by not using a brittle adhesive
and by focusing only on the effects of the adhesive thickness and the
overlap length on the deformation of the structure.



Table 1
Experimental and numerical results obtained with averaged Young modulus for end displacements and rotations. All results are in milimeters.

Experimental Numerical Experimental Numerical Experimental Numerical

L 160 180 200

uðLÞ −1.38 −1.439 −3.27 −3.204 −6.59 −6.460
wðLÞ 19.89 20.211 31.87 31.851 47.39 47.419
φðLÞ 9.15 9.500 13.24 13.398 17.81 18.089

L 220 240 260

uðLÞ −12.27 −11.931 −20.29 −20.341 −32.35 −32.228
wðLÞ 68.43 67.111 89.72 90.677 117.03 117.413
φðLÞ 23.36 23.494 28.74 29.448 35.09 35.716

Table 2
Relative error between experimental and numerical results.

Relative error (%)
L (mm) uðLÞ wðLÞ φðLÞ

160 4.275 1.614 3.825
180 2.018 0.060 1.193
200 1.973 0.061 1.567
220 2.763 1.928 0.574
240 0.251 1.067 2.463
260 0.377 0.327 1.784
mean 1.943 0.843 1.901
st. dev. 1.380 0.743 1.033

Fig. 4. Delaminated cantilever beam. a) geometry of the delaminated beam
divided into segments. b) discretization of the geometry by 24 5-node finite
elements.
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We used thin strips (300� 25� 0:15) mm made from spring steel
with Young modulus 2:1 � 105 MPa and Poisson ratio ν ¼ 0:3 as adher-
ends and an XPS board to fabricate 4 spacers of different thickness and
length for bonding with adherends via two‐sided adhesive tape. We
used XPS material beacuse of its low mass to reduce the loading effect
of the spacer.

Both, top and bottom thin strips of spring steel are modeled with
ten 4‐node finite elements. They are subjected to the distributed load
px ¼ 2:89� 10�4 N/mm that represents their mass, while the force of
added weights acts at the right end. Elements in the overlapping
region (length of the spacer) are connected to the adjacent ones with
a stiff connection, thus simulating a rigid XPS spacer. For this example
we used constant stiffness law hT ¼ hN ¼ 10 N/mm.

Figure 6 shows snapshots of 8 deformed single lap joint shear test
configurations. Four different adhesive thicknesses are simulated by
the XPS spacers. Each spacer configuration is subjected to self‐
weight and a combination of self‐weight and dead load. The numerical
results for the left and right thin bars, shown in blue and red, show
Table 3
Geometrical properties of the delaminated beam. All units are in milimeters.

rd ¼ d1=d d1 d2 hd d

0.2 3.68 15.74 1.09 20
0.8 15.74 3.68
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excellent agreement with the experiments; practically no mismatch
can be observed from the photos.

The effect of adhesive thickness and overlap length is presented in
Fig. 7. The diagram shows the angle of overlap rotation as a function of
dead weight for each spacer configuration. Four solid curves were
obtained numerically and compared with measurements at 6 different
dead loads. Each beam was measured 6 times for each of the 6 dead
loads. The experimental values were obtained for each experiment
from the photos via Matlab Image Processing Toolbox. The mean val-
ues (represented by points) and the standard deviation (represented by
handles) were calculated. The diagram shows that when the structure
is subjected only to self‐weight, there is almost no difference between
the angle of overlap rotation for 25� 20 mm and 50� 20 mm spacer
configurations and between the 25� 10 mm and 50� 10 mm spacer
configurations. The difference between the angle of overlap rotation
of both pairs leads to the conclusion that thickness plays a major role
when the structure is subjected to small loads, but when the load is
greater, the overlap length increasingly affects the results.

Similar conclusions were obtained by da Silva et al. [45,46] in their
study of bond strength. They showed that the lap shear strength
increases as the bond line becomes thinner. The same as in our case,
they found that the use of thinner spacers results in smaller angles
and loading of a lap joint mainly by shear stress.

3.4. Wrinkling of a thin film on soft substrate

When a composite of thin elastic film and thick compliant sub-
strate, as illustrated in Fig. 8a), is subjected to a compressive load
lower than some critical p < pcr, it first compresses and remains flat
(Fig. 8b). However, if this structure is further compressed with
p > pcr it is more energy efficient for the compressed thin film to bend
(wrinkle) into a periodic wave rather that continuing to compress as
flat, see Fig. 8c).

We will model this phenomenon with a beam on a continuous foun-
dation of springs, as illustrated in Fig. 8d). A similar approach to solve
this stability problem was first applied by Weighardt [47], Biot [48]
and Reissner [49].

For an initially flat plate on a soft substrate of infinite thickness, a
characteristic wavelength λ of the pattern can be calculated as follows
(see e.g. Allen [50]):

λ ¼ 2πhf
3� 4νs

4ð1� νsÞ2
�Ef

3�Es

 !1=3

; ð46Þ
b Ld L1 L

.51 40.61 158.5 25 260



Fig. 5. Delaminated thick cantilever beam subjected to self-weight in two orientations. a) snapshot of the deformed beam and b) comparison between
experimentally and numerically obtained horizontal displacements u, vertical displacements w and rotations ϕ – both for the beam with thickness ratio rd ¼ 0:2,
orientation “up”. Analogously, c) and d) represent results for the beam with thickness ratio rd ¼ 0:8, orientation “down”.
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where

�Ef ¼ Ef

1� ν2f
and �Es ¼ Es

1� ν2s
ð47Þ

are the reduced Young modulus of the film and the substrate, respec-
tively. Here, subscripts f and s denote the film and the substrate,
respectively.

For a beam resting on an elastic foundation (see Timoshenko [51])
the characteristic wavelength is:

λbeam ¼ 2π
k
Ef I

� 	�1=4

: ð48Þ

Coefficient of spring stiffness can now be calculated by assuming
λ ¼ λbeam. Equating (46) and (48) thus yields

k ¼ 16π4

λ4
Ef I: ð49Þ

According to beam theory [51], the critical buckling force Fcr for
this problem is:

Fcr ¼ Ef I
nπ
L

� �2
þ k

L
nπ

� 	2

; ð50Þ

where

n ¼ L
π

ffiffiffiffiffiffiffi
k
Ef I

4

s
ð51Þ

is a number of (half) waves the deformed beam exhibits after buckling.
For the purpose of our experiment we fabricated the thin film/soft

substrate composite from two different polymers, QSil 550 B and Elite
7

double 8 from Zhermack with the addition of a softener. The structure
was fixed between two parallel plates and deformed, as shown in
Fig. 9. We used displacement control to induce the deformation.

We measured the material properties of both polymers by tensile
and bending tests, and the geometry of the undeformed and deformed
beam using digital caliper and Matlab Image Processing Toolbox.
Specifically, we measured the Young moduli Ef ¼ 2:03 MPa and
Es ¼ 0:15 MPa, thickness hf ¼ 0:63 mm and hs ¼ 28:94 mm, width
b ¼ 35:8 mm, length L ¼ 100:2 mm on the undeformed beam and
characteristic wavelength of the undulating pattern λexp ¼ 6:039 mm
after the composite was compressed by ΔL ¼ �10:52 mm. As before,
we considered ν≐0:5 for both materials.

From Eqs. (46)–(51) we can analytically compute the spring stiff-
ness k ¼ 1:2897 N/mm2, the critical force Fcr ¼ 2:7950 N, the number
of waves n ¼ 30:6 and the characteristic wavelength λ ¼ 6:541 mm.
Since the formula for λ in Eq. (46) is based on an undeformed length
of the beam and the experimental λexp is measured on a highly
deformed beam (of about 10 %), the scaling factor
ðL� jΔLjÞ=L ¼ ð100:2� 10:52Þ=100:2 ¼ 0:895 should be applied to
the analytical solution for a fair comparison. This results in analytically
predicted λdef ¼ 5:854 mm, which is about 6:6% less than measured in
our experiments.

In our numerical model, we used 200 cubic elements to discretize
the flat simply supported beam which is connected to a spring founda-
tion with stiffness k ¼ 1:2897 N/mm2 and is subjected to an axial
point load at the end of the beam. We employ the arc‐length method
described by Stanić et al. [52] to solve a system of nonlinear equations.
A limit point was detected by observing the sign of the tangent stiff-
ness matrix determinant using a bisection algorithm. A small



Fig. 6. Thin beams in single lap joint shear test. a) and b) with 25� 20 mm spacer, c) and d) with 50� 20 mm spacer, e) and f) with 25� 10 mm spacer, g) and h)
with 50� 10 mm spacer. Structures in a), c), e) and g) are subjected to self-weight only, whereas b), d), f) and h) are subjected to a combination of self-weight and
dead load. Gravitational force is oriented horizontally as shown with vector g.

Fig. 7. Comparison of measured and calculated overlap angles for four
different spacer dimensions.

Fig. 8. Wrinkling of a thin film on substrate presented as a beam on elastic
foundation of linear springs. a) undeformed configuration. b) subcritical
deformation. c) wrinkled structure. d) spring foundation analog.
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perturbation force to incite bending of the beam was added and it was
found that the force at the limit point is 2:6181 N, which is approxi-
mately 6:3% lower than analytically predicted.

We superimpose the results of our computational model with a
solid white line over the photo in Fig. 9. A good agreement between
the experiment and the numerical computations can be found along
the mid‐length of the beam. Note that due to the edge effect, the ampli-
tude near the edge was significantly smaller than in the middle,
because the material pressed against the wall cannot deform freely
in the vertical direction and as such induces additional stresses and
acts as effectively stiffer.
8

4. Numerical examples

In this section we attest our numerical model by recomputing the
examples from the available literature and compare the results. We
focus on different scenarios of two beams interacting through the
interface layer. For example, a composite beam with interlayer slip
is considered to test the interface modeling with constant stiffness in
both directions, an axially loaded delaminated beam to test the ability
to model the contact relation as a piece‐wise interface function, and as
the last example, a double cantilever beam is chosen to test the ability
of modeling a bond layer with arbitrary nonlinear model functions.

4.1. Composite with interlayer slip

Figure 10 shows simply supported structure consisting of two
beams. They are bonded in such a way that only relative axial displace-
ments are allowed to simulate contact and interlayer slip.



Fig. 9. Photographed wrinkled specimen with end displacement
uðLÞ ¼ �10:52 mm. The substrate material is pink and the film (upper thin
layer) is gray. Solid white line represents the numerical solution with 200
cubic elements is superimposed onto the photo.

Fig. 10. Axially loaded simply supported composite structure with bottom (1)
timber beam and top (2) concrete beam.
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Table 4 shows analytical results from Girhammar and Gopu [53],
numerical results obtained with two 5‐node specially tailored nonlin-
ear finite elements from Čas et al. [36] and numerical results from
our computational model, which comprises twenty 5‐node elements
in each beam. In order to prevent relative normal displacements
between the two layers, we used a contact law with constant high pen-
alty stiffness hN ¼ 109 N/mm. The stiffness in the axial direction
(shear stiffness) is taken from the original paper, using a constant
value f T ¼ 50 N/mm2. Note that the reference results are based on
the Euler‐Bernoulli beam theory, neglecting shear deformations.
Therefore, in our formulation we used an unrealistically large value
for the shear modulus G ¼ 109 MPa for comparison purposes. We also
applied shear moduli G1 ¼ 3076:9 MPa for wood and G2 ¼ 5000 MPa
for concrete beam to allow for a more realistic response by allowing
shear deformations in the beam.

Table 4 shows the results with shear stiffened beams from [53,36]
and our computational model with large and realistic shear modulus.
We obtained a very good agreement between the results from the lit-
erature and our method. We can also observe that the influence of
the shear deformation in this problem is small but not negligible.

4.2. Axially loaded delaminated beam

Sheinmann and Soffer [54] studied the effect of geometric imper-
fection on the post‐critical behavior of delaminated beams subjected
to axial load. Figure 11 illustrates such a beam in the undeformed con-
figuration. The material is homogeneous, isotropic and linear elastic
with E ¼ 2:1 � 105 MPa and ν ¼ 0:3. The relative length of the delam-
ination is defined by the ratio ld ¼ Ld=L ¼ 0:375 and is positioned in
the middle of the beam, lengthwise.

The material points A and B are positioned at the center of the indi-
vidual layer. In the numerical model, we used 22 cubic elements, i.e. 5
elements for both ends and 6 for each layer. We defined, six pairs of
connected elements. At first, we set the stiffness function in the normal
direction to zero f N ¼ 0 N/mm2 so that the layers can move freely. The
initial curvature of the beam’s centroid axis follows a simple relation

vyðxÞ ¼ ai h sin
πx
L

� �
;

where h is the height of the cross‐section and ai is the parameter of the
imperfection amplitude. Three cases are considered for the parameter
of the imperfection amplitude: a1 ¼ 0:0001; a2 ¼ �0:00125 and
a3 ¼ �0:0625.

In Fig. 12 we show the load‐displacement curves obtained with our
computational model for the two characteristic points A and B. The red
and blue solid lines represent the results for a1 and the dashed red and
blue lines represent the results for the a2 imperfection parameter. All
four curves are compared with reference data from Ref. [54], which
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are shown with black lines. A very good agreement is found between
all results.

The case with the imperfection parameter a3 is shown in Fig. 13 in
two diagrams. In Fig. 13a) we show the load‐displacement curves
obtained with our computational model in red and blue color for top
and bottom lamina, respectively. Black solid lines represent corre-
sponding results from Ref. [54]. Note that using the model from
[54] leads to the cross‐penetration of the laminae approximately at
w=L≈� 0:0025. This non‐physical behavior can easily be avoided in
our computational model by employing a step function to simulate
the contact between laminae. We used an interface bond with zero
stiffness when the layers are apart and large numerical value when
they coincide. The results of this simulation, illustrated in Fig. 13b),
show that the red and blue solid line no longer cross‐penetrate. For
comparison, we add the results from [54].

4.3. Double cantilever bending test

In this section, we compare the results of our finite element formu-
lation with the numerical results of Alfano and Crisfield [6] for dam-
age of the interface in Mode I delamination. Damage of the
interface, associated with the softening part of the cohesive function
is identified from load‐displacement curves through sharp snap‐
throughs and snap‐backs. These instabilities can cause convergence
problems for conventional line search methods. To increase the robust-
ness of a conventional cylindrical arc‐length algorithm, Crisfield and
co‐workers [5,7] proposed alternative criteria for choosing the correct
root, the constraint equation or the calculation of the optimal step
length. Since the focus of this study is not on the line search method,
we used small values for the arc length parameter in the algorithm
from Ref. [52] and a small number of allowable iterations in each load-
ing step.

The illustration of the double cantilever bending test is shown in
Fig. 14. Geometric and material parameters are given in Table 5.
When subjected to a vertical force F, the beam of length L, with an ini-
tial notch length a0, starts to delaminate as the notch length increases
due to failure in the adhesive.

In this test, we apply an exponential and bilinear traction‐
separation relationship, as shown in Fig. 15 in blue and red solid line,
respectively. The stress defined in these formulations is multiplied by
the width of an interface on the account that we are dealing with dis-
tributed forces: σmaxb ¼ Fmax=le. We assume isotropic linear elastic
material instead of orthotropic composite material, as in the referred
paper [6].



Table 4
Comparison of analytical and numerical results of a simply supported axially loaded composite beam with interlayer slip.

Analytical [53] FEM E5�5 [36] Present FEM model
G ¼ 109 MPa G1;G2

wmax [mm] 9.276 9.274 9.274 9.312
N1 [kN] 3.897 3.918 3.920 3.932
N2 [kN] −53.897 −53.933 −53.920 −53.932
M1 [kNm]* 0.6162 0.6157 0.6158 0.7394
M2 [kNm]* 0.2054 0.2052 0.2052 0.2063
f slip [kN/cm] 13.878 13.881 13.839 13.853

* Bending moment with respect to the centroid axis of each layer

Fig. 11. Initially curved delaminated simply supported beam subjected to
axial load.

Fig. 13. Load-displacement curves of characteristic points A (upper lamina)
and B (lower lamina) for a3 ¼ �0:0625. a) unrealistic behavior as laminae
cross trough each other. b) modeling of a contact. Loads are normalized by
Euler buckling load for solid, straight and simply supported beam Fcr ,
displacements are normalized by initial length.

Fig. 12. Load-displacement curves of characteristic points A (upper lamina)
and B (lower lamina) for a1 ¼ 0:0001 and a2 ¼ �0:00125. Loads are
normalized by Euler buckling load Fcr for solid, straight, simply supported
beam, displacements are normalized by initial length. The Ref. denotes
reference [54].
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4.3.1. Exponential model
Derived from the potential energy in the crack zone, Xu and

Needleman [14] write stiffness function T for a coupled system in
two principal directions; normal and tangential. Since we are modeling
a symmetrical test where there is no relative tangential displacement
and the equation simplifies to

TnðΔwÞ ¼ σmax
Δw
ws

exp 1� Δw
ws

� 	
: ð52Þ
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Here, σmax represents the maximum cohesive surface normal
strength and ws the corresponding characteristic opening length.
Integration of the above equation yields the expression for the normal
strain energy release rate:

GI ¼
Z 1

0
TnðΔwÞdΔw ¼ σmaxws expð1Þ: ð53Þ



Fig. 15. Bilinear and exponential cohesive model functions with equal critical
cohesive energy. Smoothness parameter used in the bilinear model is
kob ¼ 0:0005.
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4.3.2. Bilinear model
The bilinear model with linear hardening and softening parts is the

most frequently used in commercial software. It was originally pro-
posed by Hillerborg et al. [9], and Alfano and Crisfield [6]. It is usually
expressed as a piece‐wise function. To avoid derivative discontinuity,
we use the hyperbolic tangent function as a step function to make
the transition between softening and hardening part smooth.
Therefore

TnðΔwÞ ¼ 0:5� 0:5 tanh Δw�wf
kob

� �� � Δwσmax 0:5�0:5 tanh Δw�ws
kob

� �� �
ws

þ
0
@

þ
σmaxðΔw�wf Þ 0:5 tanh Δw�ws

kob

� �
þ0:5

� �
ws�wf

1
A;

ð54Þ

where wf represents the characteristic length of the bond termination
and kob is a scaling factor for the smoothness of a transition between
hardening and softening. The strain energy release rate is thus:

GI ¼ σmaxwf

2
: ð55Þ

Using Eq. (53) for the exponential model and cohesive zone data
from Table 5, we calculated the appropriate opening length
ws ¼ 0:0018 mm. The same value was used in the bilinear model.
From Eq. (55) we calculated the characteristic length wf ¼ 0:0098
mm. Note that the value for ws used here is much higher than the
one from Ref. [6] (where ws ¼ 10�7 mm was used), but the strain
energy GI, the normal strength σmax and the length wf are the same.

A comparison between the results from Ref. [6] (represented in
black line) and our formulation (represented with red line for the bilin-
ear law and with blue line for the exponential cohesive law) is dis-
played in Fig. 16. An inset shows a zoomed‐in region from which a
very good agreement between the predictions of our computational
model and the reference data can be seen for both cohesive models,
despite the differences in the material model, the type of elements
and the cohesive model parameters. A “zigzag” response obtained in
the case of the bilinear law is similar to e.g. [29]. It is interesting to
note that the response resulting from the exponential interface law
with the same critical energy release rate leads to a significantly
smoother curve.

In our simulations we used 120 five‐node elements of equal length
for each beam with a total of 2886 degrees of freedom. Those located
along the initial notch are not connected, while the other 84 pairs
Table 5
Geometrical, material and cohesive zone properties for a DCB test.

L (mm) a0 (mm) b (mm) h (mm)

100 30 20 1.5

Fig. 14. A double cantilever beam. a) initial notch length a0 increases when b)
force is applied and adhesive (orange region) starts to fail.

Fig. 16. Force displacement curves for bilinear and exponential interface law
and a zoom-in inset.
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interact through the adhesion relationship hNðΔwÞ ¼ TnðΔwÞ, follow-
ing either the exponential (see Eq. (52)) or the bilinear law (see Eq.
(54)). In comparison, the result from [6] is computed using 4� 200
quadrilateral eight‐node plane‐strain (Q8) elements for the bulk mate-
rial and 140 six‐node interface elements (INT6), which together repre-
sent 6420 degrees of freedom. For example, 2406 degrees of freedom
were needed in the study by Škec et al. [29], who used interface ele-
ments for the adhesive and linear beam elements to model the bulk
material to compute approximately the same curve.

From these results we can conclude that the beam elements pre-
sented here lead to results comparable to those of 2D plane‐stress ele-
ments. The deviation in the initial part of the diagram shown in Fig. 16
E (GPa) ν σmax (MPa) UI (N/mm)

135.3 0.24 57 0.28
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is due to the use of an isotropic material model instead of an orthotro-
pic one. The fact that we used a larger value for ws and a continuous
function to describe the bilinear cohesive model has not affected the
results. With this in mind, we again emphasize the larger importance
and influence of the critical strain energy and cohesive strength than
that of the model function parameters.

5. Conclusions

We derived a finite element, based on a nonlinear Reissner beam
theory to analyze delaminated beams. The formulation is designed
to be consistent, robust and flexible. The connection between the lay-
ers is prescribed with an arbitrary function for the stiffness of springs,
which are continuously distributed over the length of an element. The
displacement field on which the stiffness function depends is expressed
in a local deformed basis. Large displacements and rotations are taken
into account. The distributed force resulting from the interaction
between the layers is included in the governing equations to avoid
the need for additional interface finite elements and to integrate the
equations with a single numerical method.

The versatility of our computational model and the formulation of
the interface layer is demonstrated by a number of numerical and
experimental examples. We modeled delamination, contact, friction
and cohesion and obtained an excellent agreement between numerical
and experimental results. In addition, our computational method justi-
fies the use of beam finite elements, as they use fewer degrees of free-
dom compared to the most commonly used 2D plane‐stress elements
and provide comparable results for these types of problems.
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Appendix A

The complete variations of the main Eqs. (38) and (39) with respect
to the discrete nodal unknowns.

jδe ¼ ∑
R le
0 b1PA0

i P
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