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Abstract
We present a novel consistent singularity-free strain-based finite element formulation for the analysis of three-dimensional
frame-like structures. Our model is based on a geometrically exact finite-strain beam theory, quaternion parametrization of
spatial rotations, assumption that the strain measures are constant along the length of the element and a proper choice of basis
for the translational strain vector representation. As it is common for strain-based elements, the present formulation does not
suffer from shear locking. A comparison of our results with the results from the literature and a commercial finite element
analysis software demonstrates the advantages of the proposed formulation, especially when the structure is subjected to
larger shear deformations. This stems from the fact that our model ensures a mathematically consistent updating procedure
for all the quantities describing the beam. This aspect is often overlooked, since most of the numerical cases from other studies
on this topic engage rather small-shear strains for which the consistent update is not crucial as the number of elements is
increased.

Keywords Three-dimensional Reissner beam · Rotational quaternion · Strain vector · Global basis

1 Introduction

Nonlinear spatial beam theory is indispensable in many
different fields of science; ranging from structural engineer-
ing [1,2], microbiology [3], nanotechnology [4], computer
graphics [5,6] to photogrammetry [7] and robotics [8]. Under
various constrains and theoretical assumptions, the problems
from these diverse fields demand advanced formulations
solution procedures to effectively solve them. Beam for-
mulations differ in the way the kinematics of a beam-like
structure is approximated.An importantmilestone in the evo-
lution of the beam models is the geometrically exact theory
of plane beams by Reissner [9] as it represents the beginning
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of the revival of research on this topic. Succeding the classi-
cal Cosserat beam theory [10], Reissner [11] and Simo [12]
developed exact kinematic relations between displacements
and deformations for a spatial beam through the use of vir-
tual work principle without the constraints on themagnitudes
of strains, internal forces, displacements and rotations. Later,
Simo andVu-Quoc [13] presented numerical implementation
of the theory using the finite element method. These classical
works havemotivatedmany other researchers developing the
modern beam finite element formulations, see e.g. Cardona
andGéradin [14], Ibrahimbegović [15], Jelenić and Saje [16],
Smolénski [17], etc.

We can classify beam formulations according to: the kine-
matic assumptions used, how the rotations are parametrized
and which variables are chosen as primary. Rotations are
often amember of the primary variables in three-dimensional
beam formulations, even though they require a special treat-
ment. Several mathematical models to describe rotations
have been proposed, such as Euler angles, rotation matrix,
rotational vector, direction cosine matrix, rotational quater-
nion, etc., see e.g. Argyris [18], Argyris and Poterasu [19],
Géradin andRixen [20], Spring [21],Atluri andCazzani [22],
Zupan et al. [23]. Among them, the rotational vector is often
preferable over other parametrizations of rotations because
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the rotation axis and the angle of rotation can be compacted
into only three parameters (see also [13–17,24,25]). But uti-
lizing minimal number of parameters to describe rotations
may result in singular points, as shown by Stuelpnagel [26]
and Atluri [22]. However, singularities can be avoided by
using updated-Lagrangian schemes where the incremental
rotations are interpolated and not total rotations, as seen e.g.
in [27,28]. A detailed comparative analysis of these mod-
els can be found in [20–22,29]. They identify and evaluate
the most important aspects, such as number of parameters
needed, programming simplicity, reliability, comprehensibil-
ity, etc. Since rotational vectors are non-additive quantities,
a special interpolation of rotations has to be used. Crisfield
and Jelenić [30] outlined that using standard rotational-vector
based formulations usually leads to non-objectivity and
path-dependency. Ibrahimbegović [29] presented the short-
comings of total rotational vector when describing rotations
greater than 2π . On the other hand, incremental rotational
vector [29] and orthogonal tensor representation of finite
rotations [13] as upgrades are proven to give correct results
even for large rotations. The same conclusions were obtained
by Battini and Pacoste [31] with their co-rotational beam
elements employing incremental rotational vectors. Further-
more, it appears that using four parameters (which inherently
increases the number of degrees of freedom) avoids the sin-
gularity and increases computational efficiency, as shown by
McRobie and Lasenby [32] in their rod formulation based
on Clifford algebra. Further studies by Zupan et al. [33–35]
show that using rotational quaternions, more efficient, sta-
ble and robust numerical formulations of beams for dynamic
analysis can be obtained.

The resultant strains in the geometrically exact beam
model can be treated as additive. With this in mind, many
authors e.g. Tabarrok et al. [36], Češarek et al. [24], Zupan
and Saje [25,37] interpolate strain measures. Such choice of
primary variables leads to a straightforward proof of objec-
tivity and invariance of rigid-body motion. Considering the
physical nature of strain measures, they are expressed in
material basis to fit into constitutive equations.

In this contribution, we formulate a strain-based finite ele-
ment for the analysis of three-dimensional beams. We allow
the beam to deform by flexure, torsion, extension, and shear
without any restrictions on the magnitudes of displacements
and rotations. The computational model is based on the geo-
metrically exact beam theory and structured to be consistent
and mathematically accurate. To ensure a singularity-free
formulation, we adopt quaternion algebra to parametrize spa-
tial rotations and employ coordinate system transformations.
Strain measures are chosen here as the primary unknowns,
while their additive nature is preserved using the correct
choice of bases. We use a local basis for rotational strain
vector κ and a global (fixed) basis for the translational strain
vector γ . Although our choice for the component description

of translational strain vector is different than in conventional
strain-basednumericalmodels,weprove that it ensuresmath-
ematically consistent update procedure. Moreover, the strain
vectors are assumed constant along the length of the beam in
order to analytically integrate kinematic equations and avoid
the need for any additional approximation or source of error.
The influence of the chosen description of transverse strains
is carefully analysed and tested with a variety of numeri-
cal examples. These include a thick cantilever beam, shear
loaded double asymmetric tapered beam, a right-angle can-
tilever and a beam bent into a helical form. All examples
are also modeled with a commercial finite element analy-
sis software and compared to our results. The final section
summarizes the work done in this study.

2 Theoretical formulation

In this section we present the components needed to develop
the formulation.Weapply quaternion algebra to describe spa-
tial rotations, most suitable component description and vari-
ational formalism to express the strain measures. Combined
with equilibrium and constitutive relations, we structure a set
of governing equations, which we later solve numerically.

2.1 Parametrization of rotations

We choose Euler-Rodrigues parameters in a form of unit
quaternions for parametrization of rotations and give a brief
summary of the most important ingredients. (For a detailed
review on quaternion algebra and its applications see e.g.
Ward [38] and Zupan et al. [23].) We will denote quaternions
with a hat symbol ˆand the quaternion multiplication with a
symbol ◦. As spatial vectors and scalars form the subspace
in the space of quaternions, the rules of vector and scalar
algebra also apply in quaternion manipulation.

A quaternion â is a combination of a scalar and a vector,
formally presented as:

â = a0 + a, a0 ∈ R, a ∈ R
3, (1)

with the norm |â| =
√
a20 + |a|2, where |a| = √

a · a. Its
conjugated form is â∗ = a0 − a. The quaternion multiplica-
tion is associative, distributive and non-commutative; and is
defined as

â ◦ b̂ = (a0b0 − a · b) + (b0a + a0b + a × b), (2)

where · denotes the scalar product and × the cross product.
A rotational quaternion q̂ = q0 + q has a unit norm |q̂| = 1.
Moreover,

q̂ ◦ q̂∗ = 1̂. (3)
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Due to the non-commutative nature of the quaternion, it is
convenient to introduce two linear operators for left and right
multiplication of unit quaternion q̂ with an arbitrary quater-
nion x̂ :

q̂ ◦ x̂ = φL(q̂)x̂, (4)

x̂ ◦ q̂ = φR(q̂)x̂, (5)

where

[φL(q̂)] =

⎡
⎢⎢⎣

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

⎤
⎥⎥⎦ ,

[φR(q̂)] =

⎡
⎢⎢⎣

q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0

⎤
⎥⎥⎦ ,

with [q̂] = [q0, q1, q2, q3]T and [x̂] = [x0, x1, x2, x3]T rep-
resenting a component one-column form of quaternions q̂
and x̂ . When q̂ has a unit norm, φL(q̂) and φR(q̂) are orthog-
onal; thusφL(q̂)T = φR(q̂) andφR(q̂)T = φL(q̂). Therefore
operators φL and φR represent rotations in four-dimensional
space as they conserve the length, the angle and the orienta-
tion of x̂ . But in the case of three-dimensional rotations,when
vectors (pure quaternions) are involved, operators φL and φR

do not map pure quaternions (vectors) into pure quaternions.
Consequently, an appropriate combination of two operators
that preserves the length of the mapped vector inR3 has to be
defined. A combination of two consecutive rotations is again
a rotation [38]. Here, a left and right quaternion multiplica-
tion is used to construct operator Q as follows

q̂ ◦ x̂ ◦ q̂∗ = Q(q̂)x̂, (6)

Q(q̂) = φL(q̂)φR(q̂∗) = φR(q̂∗)φL(q̂), (7)

which reads in matrix notation:

[Q] =
[

1 01×3

03×1 R

]
, (8)

[R] = 2

⎡
⎣

q20 + q21 − 1
2 q1 q2 − q0 q3 q0 q2 + q1 q3

q1 q2 + q0 q3 q20 + q22 − 1
2 −q0 q1 + q2 q3

−q0 q2 + q1 q3 q1 q0 + q2 q3 q20 + q23 − 1
2

⎤
⎦ .

(9)

Here, [R] denotes a submatrix that is often found in the liter-
ature (see e.g. Argyris [18]) and is called a standard rotation
matrix in three-dimensional rotation space. It has to be men-
tioned that each of φR(q̂∗) and φL(q̂) represent one half of
the rotation. For this reason, the polar form of a quaternion
representation of the rotational vector ϑ takes the following
form:

q̂ = cos
ϑ

2
+ n sin

ϑ

2
= exp

(
ϑ

2

)
, (10)

where n = ϑ/ϑ is the unit vector that represents the axis of
rotation and ϑ is the angle of rotation. The rotational quater-
nion can also be defined with an exponential map [39]. This
expression follows from the Taylor series expansion of the
sine and cosine functions in Eq. (10) and reads

q̂ =
(
1 − 1

2!
(

ϑ

2

)2

+ 1

4!
(

ϑ

2

)4

− · · ·
)

+ n

(
ϑ

2
− 1

3!
(

ϑ

2

)3

+ 1

5!
(

ϑ

2

)5

− · · ·
)

= 1̂ + ϑ

2
+ 1

2!
ϑ

2
◦ ϑ

2
+ 1

3!
ϑ

2
◦ ϑ

2
◦ ϑ

2
+ · · ·

= exp

(
ϑ

2

)
.

(11)

2.2 Geometry, kinematics

Let g = {g1, g2, g3} denote a set of fixed orthonormal
vectors, here called the global basis. A material curve L0

is defined by a vector function r0g to each point s on the
material curve with respect to the origin of the coordi-
nate system O. Here, s represents the arc-length parameter
of the undeformed curve. If the beam is of initial length
L , then s ∈ [0, L]. Furthermore, let L0 connect the cen-
troids of the beam’s cross-sections and let the tangent to the
curve define their orientation of the undeformed configura-
tion of the beam (see Fig. 1). Then a local orthonormal basis
G0 = {G0

1, G
0
2, G

0
3} can be defined such that the base vec-

tor G0
1(s) = d r0g (s)/ds is normal to the cross-section, and

G0
2 and G0

3 are vectors directed along the principal axes of
the second moment of area of the cross-section. Obviously,
G0

2 × G0
3 = G0

1. As the coordinate system defined by G0

follows the material curve L0, we call G0 a material base.
Vector G0

1(s) is in general tangent to material curve L0 only
when the initial configuration is undeformed.

The deformed configuration of the beam is described in
a similar manner with rg(s), G1(s), G2(s) and G3(s). As
the shear strains are allowed, vector G1(s) is not necessary
tangent to the material curve L. We additionally assume that
the deformed cross-sections remain planar and have the same
shapes and areas as in the initial configuration.

In order to apply quaternion algebra to the formulation,
mathematical configuration space is expanded into four-
dimensions. Every vector from the three-dimensional space
is expanded with a zero scalar part to form a pure quater-
nion. A unit quaternion 1̂ is also introduced to supplement
the three base vectors. Local and global bases now consist of
four quaternions Ĝ0, Ĝ1, Ĝ2, Ĝ3 and ĝ0, ĝ1, ĝ2, ĝ3, respec-
tively. Here Ĝ0 = ĝ0 = 1 + 0 = 1̂ and Ĝi = 0 + Gi ,

123



1400 Computational Mechanics (2020) 65:1397–1412

Fig. 1 Model of a spatial beam in initial and deformed configuration.
Fixed, local initial and local deformed bases are related via transforma-
tion matrices Q0(q̂0), Z(k̂) and Q(q̂)

ĝi = 0 + gi , for i ∈ {1, 2, 3}. A spatial rotation, as well as
the coordinate transformation can be obtained by the linear
operator Q. Both, fixed andmoving bases are thus associated
via relation

Ĝi = Qĝi = q̂ ◦ ĝi ◦ q̂∗, i ∈ {1, 2, 3}. (12)

The total rotation can be separated into an initial rota-
tion and a relative rotation, which is in quaternion notation
expressed as:

q̂(s) = k̂(s) ◦ q̂0(s). (13)

Here, the rotational quaternion q̂0 represents the transfor-
mation between the global gi and local G0

i basis, while the
rotational change from the initial to the deformed configu-
ration is described by rotational quaternion k̂. The rotation
matrix Q is similarly replaced by a product of rotation
matrices: Q = ZQ0, where Z(k̂) = φL(k̂)φR(k̂∗) and
Q0(q̂0) = φL(q̂0)φR(q̂∗

0 ).
An arbitrary pure quaternion â can be expressed in global

[â]g = [0, ag1, ag2, ag3]T or local [â]G = [0, aG1, aG2,

aG3]T basis. The transformation between both representa-
tions is obtained through rotation Q:

âg = QâG = φL(q̂)φR(q̂∗)âG = q̂ ◦ âG ◦ q̂∗. (14)

Since Q is orthogonal, we can also write an inverse transfor-
mation as,

âG = QT âg = φT
L (q̂)φT

R (q̂∗)âg = φR(q̂)φL(q̂∗)âg
= q̂∗ ◦ âg ◦ q̂.

(15)

2.3 Variation of rotational quantities

Three-dimensional rotations can be chosen as primary
unknowns of the spatial beam.With rotations not being addi-
tive quantities, we have to look into their variation prior to
the linearization process. We write the variation of Eq. (12)
as follows

δĜi = δq̂ ◦ ĝi ◦ q̂∗ + q̂ ◦ ĝi ◦ δq̂∗

= δq̂ ◦ q̂∗ ◦ Ĝi + Ĝi ◦ q̂ ◦ δq̂∗

= δq̂ ◦ q̂∗ ◦ Ĝi − Ĝi ◦ δq̂ ◦ q̂∗.

In the above derivation, we take into account the variation of
a conjugated quaternion as defined in Eq. (3),

δq̂∗ = −q̂∗ ◦ δq̂ ◦ q̂∗. (16)

Left multiplication leads to q̂ ◦ δq̂∗ = −δq̂ ◦ q̂∗, which is
a common property for all pure quaternions. Therefore, by
using quaternion multiplication according to Eq. (2), we can
write

δĜi = 2δq̂ ◦ q̂∗ ◦ Ĝi = δϑ̂ ◦ Ĝi , (17)

where δϑ̂ denotes a non-unit pure quaternion 2δq̂ ◦ q̂∗. It
represents the variational part of a rotated vector.

2.4 Equilibrium and strain measures

It is convenient to express the equilibrium equations in the
global frame,

ng(s) = −N ′
g(s), (18)

mg(s) = −M ′
g(s) − r ′

g(s) × Ng(s). (19)

Here, n and m are external distributed force and moment
vectors per unit length of the undeformed configuration, and
N and M are the stress resultant force and moment vectors,
respectively.

A three-dimensional finite-strain beam theory introduces
two strain vectors: a translational strain vector γ and a rota-
tional strain vector κ . In the material frame description, the
components of these vectors represent: extensional strain
γ G1, shear strains γ G2 and γ G3, torsional strain κG1 and
bending strains κG2 and κG3.

Following the approach of Reissner [11], the virtual work
principle is applied,
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∫ L

0
(NG · δγ G + MG · δκG)ds

=
∫ L

0
(ng · δrg + mg · δϑg)ds+[Fg · δrg+Pg · δϑg]L0 .

(20)

Here, force and moment vectors NG , MG and virtual strains
δγ G , δκG are expressed with respect to the local basis, while
external distributed loads ng , mg , virtual displacements δrg
and rotations δϑg , and boundary point forces and moments
Fg(0), Pg(0), Fg(L) and Pg(L) are written with respect to
the global basis. The generalized virtual work principle can
be expanded into four dimensions with a substitution of a
rotational vector with rotational quaternion, as presented in
the work by Zupan et al. [40]. After inserting equilibrium
equations (18) and (19) into the principle of virtual work
and following the calculus of variation, we obtain linearized
kinematic relations between virtual strains, virtual displace-
ments and virtual rotational quaternions. We write the result
in quaternion form as follows:

δγ̂G = q̂∗ ◦ δr̂ ′
g ◦ q̂ + 2q̂∗ ◦ (r̂ ′

g ◦ (δq̂ ◦ q̂∗)) ◦ q̂, (21)

δκ̂G = 2q̂∗ ◦ (δq̂ ◦ q̂∗)′ ◦ q̂. (22)

For the integration ofEqs. (21) and (22), a special attention
is needed. We recognize the term 2δq̂ ◦ q̂∗ = δϑ̂ in Eq. (21)
from Eq. (17). This means that δγ̂G is a measure for the rate
of change of vector q̂∗ ◦ r̂ ′

g ◦ q̂ due to the variation of the
rotational quaternion. We can write:

γ̂G = q̂∗ ◦ r̂ ′
g ◦ q̂ + ĉG . (23)

With further application of quaternion algebra, Zupan et al.
[23] provide the relationship between the curvature vector
and the rotational quaternion:

κ̂G = 2q̂∗ ◦ q̂ ′ + d̂G , (24)

where the unknown variational constants ĉG(s) and d̂G(s)
are vector functions to be determined from the known strain
and kinematic measures in the initial configuration of the
beam. The initial curvature and twist along the length of the
beam can be introduced through these constants, but they
do not change throughout the loading process. In the initial
state of the beam, its cross-sections are usually considered
to be orthogonal to the centroid axis, i.e. orthogonal to the
tangent vector d r0g (s)/ds. If we further assume that the beam
is initially undeformed, i.e. that the strains and rotations are
zero: γ̂ 0

G ≡ 0̂, κ̂0
G ≡ 0̂ and q̂ ≡ q̂0, [k̂] = [1, 0, 0, 0]T , the

variational constants ĉG and d̂G are

ĉG = γ̂ 0
G − q̂∗

0 ◦ r̂0′g ◦ q̂0 = −Ĝ0
1, (25)

d̂G = κ̂0
G − 2q̂∗

0 ◦ q̂ ′
0 = −2q̂∗

0 ◦ q̂ ′
0. (26)

If the beams are curved in the undeformed configuration,
we can separate the influence of the initial geometry from
the rotational deformations. Inserting Eq. (13) for the total
rotation into Eq. (24) splits the total curvature into two parts:
the rotational strain κ̂G(k̂) and the initial curvature κ̂0

G(q̂0),

κ̂G(q̂) = 2q̂∗
0 ◦ k̂∗ ◦ (k̂ ◦ q̂0)

′ + d̂G

= 2q̂∗
0 ◦ k̂∗ ◦ k̂′ ◦ q̂0 + 2q̂∗

0 ◦ q̂ ′
0 + d̂G

= q̂∗
0 ◦ κ̂G(k̂) ◦ q̂0 + κ̂0

G(q̂0) + d̂G

= Q0(q̂0)κ̂G(k̂).

Wecan notice that the initial curvature κ̂0
G(q̂0) vanishes when

we add variational constant d̂G . The total curvature vector is
simply obtained by multiplying initial rotation matrix and
rotational strain. Therefore, the split of the total rotational
quaternion (13) further simplifies the expressions.

Finally, we can write the curvature and translational strain
vectorswith respect to both bases by employingEqs. (14) and
(15):

γ̂g = r̂ ′
g − q̂ ◦ Ĝ1 ◦ q̂∗, (27)

γ̂G = q̂∗ ◦ r̂ ′
g ◦ q̂ − Ĝ1 (28)

and

κ̂g = 2k̂′ ◦ k̂∗, (29)

κ̂G = 2q̂∗
0 ◦ k̂∗ ◦ k̂′ ◦ q̂0. (30)

Wewill choose the strain vectors as the primary unknowns
of the problem and assume them to be constant along the
length of beam. For the reasons which will become evi-
dent later, we will express the translational strain vector in
global basis and denote γ̂

L/2
g , while the rotational strain vec-

tor will be expressed in the local basis and denoted by κ̂
L/2
G .

In accord with the discretization scheme that follows, they
will be evaluated at the mid-length and are thus denoted with
upper index L/2. After assuming constant strain measures,
we can directly integrate kinematic equations (27) and (30)
and express the position vector r̂g(s) and the relative rota-
tional quaternion k̂(s)with respect to translational strain and
curvature:

r̂g(s) = r̂g(0) + γ̂
L/2
g s +

∫ s

0
Q(s̃)Ĝ1(s̃)ds̃, (31)

k̂(s) = k̂(0) ◦ exp
(
Q0(0)κ̂

L/2
G s/2

)
. (32)

Equation (32) is derived by following the work by Zupan et
al. [39]. The above formulae determine the shape functions
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of displacement and rotation field of our element. Note, that
such an element gives exact results for constant strains.

2.5 Constitutive equations

Constitutive forces and moments are evaluated from a linear
constitutive law as,

N̂C
G = CN (γG, κG) = ĈNγ γ̂G + ĈNκ κ̂G, (33)

M̂C
G = CM (γG, κG) = ĈMγ γ̂G + ĈMκ κ̂G, (34)

where the operators CN (γG, κG) and CM (γG, κG) are repre-
sented with the following 4 × 4 matrices

[ĈNγ ] =

⎡
⎢⎢⎣

1 0 0 0
0 E A 0 0
0 0 GAs 0
0 0 0 GAs

⎤
⎥⎥⎦

and

[ĈMκ ] =

⎡
⎢⎢⎣

1 0 0 0
0 GJ1 0 0
0 0 E J2 0
0 0 0 E J3

⎤
⎥⎥⎦ .

Young and shearmoduli are here denoted by E andG, respec-
tively, A is an area of the cross-section and As is the effective
shear area, torsional moment of inertia is denoted with J1
and second moments of area about corresponding principal
axes with J2 and J3. In a more general case, where the beam
axis does not pass through the centroid and shear center,
off-diagonal terms, including deviatoric and static moment
of area would appear in constitutive matrices. Note, that the
accuracy of N̂C

G and M̂C
G is the same as that of the primary

unknowns, which allows us to elegantly avoid the shear-
locking (see also [25]).

From the equilibrium equations it is also suitable to
express the resultant stresses in fixed basis, as follows:

N̂C
g = q̂ ◦ N̂C

G ◦ q̂∗ = QN̂C
G

= QĈNγ Q
T γ̂g + QĈNκ κ̂G, (35)

M̂C
g = q̂ ◦ M̂C

G ◦ q̂∗ = QM̂C
G

= QĈMγ Q
T γ̂g + QĈMκ κ̂G . (36)

2.6 Governing equations

External loads n̂g(s) and m̂g(s) are assumed to be known
analytical functions of the arc-length parameter s. With this
at hand, equilibrium Eqs. (18) and (19) can be directly inte-
grated

N̂g(s) = N̂g(0) −
∫ s

0
n̂g(s̃)ds̃, (37)

M̂g(s) = M̂g(0) −
∫ s

0
m̂g(s̃)ds̃ −

∫ s

0
r̂ ′
g(s̃) × N̂g(s̃)ds̃.

(38)

Using a skew-symmetric operator As (see [41]), we replace
a vector product with a matrix multiplication as

v × u = As(v)u = −As(u)v, (39)

[As(v)][u] =
⎡
⎣

0 −v3 v2
v3 0 −v1

−v2 v1 0

⎤
⎦

⎡
⎣
u1
u2
u3

⎤
⎦ , (40)

and rewrite Eq. (19) accordingly,

M̂g(s) = M̂g(0) +
∫ s

0

(
As

(
N̂g(s̃)

)
r̂ ′
g(s̃) − m̂g(s̃)

)
ds̃

= M̂g(0) +
∫ s

0

(
As

(
N̂g(s̃)

)(
γ̂
L/2
g

+ Q(s̃)Ĝ1(s̃)
) − m̂g(s̃)

)
ds̃.

(41)

The set of governing equations consists of constitutive
Eqs. (35), (36), equilibrium Eqs. (37), (41), kinematic Eqs.
(31), (32) and boundary conditions. Constitutive relations
are evaluated at the mid-point of the beam. To put the beam
into physical space (three-dimensional Euclidean space R3),
we evaluate the kinematic equations at s = L , resulting in
discrete relations betweenprimary unknowns at s = 0, s = L
and s = L/2.

1ê = N̂C
g (L/2) − N̂g(L/2) = 0̂, (42)

2ê = M̂C
g (L/2) − M̂g(L/2) = 0̂, (43)

3ê = r̂ Lg − r̂0g − γ̂
L/2
g L −

∫ L

0
Q(s)Ĝ1(s)ds = 0̂, (44)

4ê = k̂ L − φL
(
k̂0

)
exp

( L
2 Q0κ̂

L/2
G

) = 0̂, (45)
5ê = F̂0

g + N̂ 0
g = 0̂, (46)

6ê = P̂0
g + M̂0

g = 0̂, (47)
7ê = F̂ L

g − N̂g(L) = 0̂, (48)
8ê = P̂ L

g − M̂g(L) = 0̂. (49)

Here, F̂0
g and F̂ L

g denote external forces, while P̂0
g and P̂ L

g
denote external moments at the beginning and the end of the
beam element. Constitutive and equilibrium equations are
evaluated at themid-length of the beam. In this way, the (left-
right) orientation of the centroidal axis becomes irrelevant,
resulting in orientation-independent finite elements that are
symmetrical with respect to the mid-length point. Primary
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variables of this formulation r̂0g , r̂
L
g , k̂

0, k̂ L , N̂ 0
g , M̂

0
g , γ̂

L/2
g and

κ̂
L/2
G are denotedwith indices 0, L and L/2 to determine their

position on the beamwith respect to the arc-length parameter
s of the undeformed beam.

3 Numerical implementation

3.1 Linearization

Before we linearize the system of non linear equations (42)–
(49), it is suitable to prepare some terms first.

Variational form of Eqs. (14) and (15) is:

δQâG = δk̂ ◦ k̂∗ ◦ k̂ ◦ q̂0 ◦ âG ◦ q̂∗
0 ◦ k̂∗

− k̂ ◦ q̂0 ◦ âG ◦ q̂∗
0 ◦ k̂∗ ◦ δk̂ ◦ k̂∗

= (
φR(ZQ0âG) − φL(ZQ0âG)

)
φR(k̂∗)δk̂, (50)

δQT âg = −q̂∗
0 ◦ k̂∗ ◦ δk̂ ◦ k̂∗ ◦ âg ◦ k̂ ◦ q̂0

+ q̂∗
0 ◦ k̂∗ ◦ âg ◦ k̂ ◦ k̂∗ ◦ δk̂ ◦ q̂0

= QT
0

(
φL(ZT âg) − φR(ZT âg)

)
φL(k̂∗)δk̂, (51)

where the variation of total rotation δq̂ = δk̂ ◦ q̂0 was taken
into account.

Variational form of Eqs. (31) and (32) reads:

δr̂g(s) = δr̂0g + sδγ̂ L/2
g +

∫ s

0
δQ(s̃)Ĝ1(s̃)ds̃

= δr̂0g + sδγ̂ L/2
g +

∫ s

0

(
φR

(
Q(s̃)Ĝ1(s̃)

)

−φL
(
Q(s̃)Ĝ1(s̃)

))
φR

(
q̂∗(s̃)

)
δq̂(s̃)ds̃, (52)

δk̂(s) = δk̂0 ◦ exp
(
Q0κ̂

L/2
G s/2

)

+ k̂0 ◦ δ
(
exp(Q0κ̂

L/2
G s/2)

)

= φR
(
exp(Q0κ̂

L/2
G s/2)

)
δk̂0

+φL(k̂0)T δκ̂
L/2
G , (53)

where a variation of an exponential map is replaced by
δ
(
exp(Q0κ̂

L/2
G s/2)

) = T (s)δκ̂L/2
G . The derivation of this

relation is based on the directional derivative:

δ
(
exp(Q0κ̂

L/2
G s/2)

)

= d

dε

(
exp(Q0(κ̂

L/2
G + εδκ̂

L/2
G )s/2)

)∣∣∣
ε=0

,

which after a short derivation leads to a compact formula

T = Q0a0 I − a0K0s/2 + Q0a1K1,

where I corresponds to a 4 × 4 identity matrix, while K0,
K1, a0 and a1 correspond to

[K0] =

⎡
⎢⎢⎣

0 κG1 κG2 κG3

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

[K1] =

⎡
⎢⎢⎣

0 0 0 0
0 κG1κG1 κG1κG2 κG1κG3

0 κG2κG1 κG2κG2 κG2κG3

0 κG3κG1 κG3κG2 κG3κG3

⎤
⎥⎥⎦ ,

a0 = κ−1
G sin(κGs/2)

and

a1 = κ−2
G cos(κGs/2)s/2 − κ−3

G sin(κGs/2).

After inserting Eq. (53) into Eqs. (50) and (51), we see
that every rotation or basis transformation depends upon the
rotational quaternion at the beginning of the beam and its
mid-length curvature. Therefore, the linearization of consti-
tutive resultant forces and moments can be expressed with
variations of strains and rotations as

δ N̂C
g = δQN̂C

G + Qδ N̂C
G

= δQN̂C
G + QĈNγ δQT γ̂g

+QĈNγ Q
T δγ̂g + QĈNκ δκ̂G

= (
φR(QN̂C

G ) − φL(QN̂C
G )

)
φR(k̂∗)δk̂

+QĈNγ

(
φL(QT γ̂g) − φR(QT γ̂g)

)
φL(k̂∗)δk̂

+QĈNγ Q
T δγ̂g + QĈNκ δκ̂G , (54)

δM̂C
g = δQM̂C

G + QδM̂C
G

= δQM̂C
G + QĈMγ δQT γ̂g

+QĈMγ Q
T δγ̂g + QĈMκ δκ̂G

= (
φR(QM̂C

G ) − φL(QM̂C
G )

)
φR(k̂∗)δk̂

+QĈMγ

(
φL(QT γ̂g) − φR(QT γ̂g)

)
φL(k̂∗)δk̂

+QĈMγ Q
T δγ̂g + QĈMκ δκ̂G . (55)

Variations of equilibrium internal forces and moments,
that follow from Eqs. (37) and (41), are:

δ N̂g(s) = δ N̂ 0
g , (56)

δM̂g(s) = δM̂0
g −

∫ s

0

(
As

(
r̂ ′
g(s̃)

)
δ N̂g(s̃)

−As
(
N̂g(s̃)

)
δr̂ ′

g(s̃)
)
ds̃

= δM̂0
g −

∫ s

0

(
As

(
γ̂
L/2
g + Q(s̃)Ĝ1(s̃)

)
δ N̂ 0

g
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−As
(
N̂g(s̃)

)
(δγ̂g + δQ(s̃)Ĝ1(s̃))

)
ds̃. (57)

After these preparations, the system of Eqs. (42)–(49) can
be written in a compact linearized form as follows

δ1ê = δ N̂C
g (L/2) − δ N̂g(L/2), (58)

δ2ê = δM̂C
g (L/2) − δM̂g(L/2), (59)

δ3ê = δr̂ Lg − δr̂g(L), (60)

δ4ê = δk̂ L − δk̂(L), (61)

δ5ê = δ N̂ 0
g , (62)

δ6ê = δM̂0
g , (63)

δ7ê = −δ N̂ 0
g , (64)

δ8ê = −δM̂g(L). (65)

3.2 Numerical solution procedure

With linearized equations at hand, we can construct a tan-
gent stiffness matrix K [n] and a residual f [n] for the current
configuration in iteration n. Let δy denote a vector of correc-
tions of the primary unknowns: δr̂0g , δk̂0, δr̂ Lg , δk̂ L , δ N̂ 0

g ,

δM̂0
g , δγ̂

L/2
g and δκ̂

L/2
G . Since our configuration space is

a four-dimensional space of quaternions, the total number
of degrees of freedom per each element is 26 (2 rotational
quaternions and 6 pure quaternions). Corrections of the pri-
mary unknowns are obtained in each iteration as the solution
of a system of linear equations K [n]δy = − f [n].

Position vectors at boundaries of the element, internal
forces, moments and translational strains are expressed in
the fixed global basis. Therefore, updated values in new iter-
ation n + 1 are obtained by simply adding the corrections to
the values at the current iteration n:

r̂ p[n+1]
g = δr̂ pg + r̂ p[n]

g , (66)

N̂ 0[n+1]
g = δ N̂ 0

g + N̂ 0[n]
g , (67)

M̂0[n+1]
g = δM̂0

g + M̂0[n]
g , (68)

γ̂
L/2[n+1]
g = δγ̂

L/2
g + γ̂

L/2[n]
g , (69)

where p ∈ {0, L}.
Note that due to the non-standard choice of the component

form of the translational strain vector, the exactness of the
update Eq. (69) needs some additional explanation. To prove
Eq. (69) we first rearrange Eqs. (27) and (21) and insert them
into the derivative of Eq. (66):

δr̂ ′
g + r̂ ′[n]

g = 2δq̂ ◦ q̂∗ ◦ r̂ ′
g + q̂ ◦ δγ̂G ◦ q̂∗

+ q̂[n] ◦ γ̂
[n]
G ◦ q̂∗[n] + q̂[n] ◦ Ĝ1 ◦ q̂∗[n]

= 2δq̂ ◦ q̂∗ ◦ (q̂ ◦ γ̂G ◦ q̂∗ + q̂ ◦ Ĝ1 ◦ q̂∗)

+ q̂ ◦ δγ̂G ◦ q̂∗ + q̂[n] ◦ γ̂
[n]
G ◦ q̂∗[n]

+ q̂[n] ◦ Ĝ1 ◦ q̂∗[n].

(70)

Following the same procedure as for Eq. (17) we can replace
the term q̂ ◦ δγ̂G ◦ q̂∗ + 2δq̂ ◦ q̂∗ ◦ q̂ ◦ γ̂G ◦ q̂∗ with δγ̂g .
Since the vectors expressed in a fixed basis can be directly
summed, the sum of the transformed cross-sectional normal
vector q̂[n] ◦ Ĝ1 ◦ q̂∗[n] and its variation is equal to the update
of the same vector

q̂[n] ◦Ĝ1◦ q̂∗[n]+δ(q̂[n] ◦Ĝ1◦ q̂∗[n]) = q̂[n+1] ◦Ĝ1◦ q̂∗[n+1].
(71)

Inserting Eq. (71) into (70), leads to

r̂ ′[n+1]
g = q̂[n+1] ◦ γ̂

[n+1]
G ◦ q̂∗[n+1] + q̂[n+1] ◦ Ĝ1 ◦ q̂∗[n+1]

= δγ̂g + q̂[n] ◦ γ̂
[n]
G ◦ q̂∗[n] + q̂[n+1] ◦ Ĝ1 ◦ q̂∗[n+1]

(72)

and considering the coordinate transformation, finally gives

γ̂ [n+1]
g = δγ̂g + γ̂ [n]

g . (73)

On the other hand, rotational quaternions and curvature
vectors are non-additive. Boundary nodal rotation correc-
tions δk̂ p, for p ∈ {0, L} at each element are expressed in
the tangent space, which is not a space of unit quaternions.
The tangential correction δk̂ is first mapped onto the space
of unit quaternions:

Δk̂ p = cos|δk̂ p ◦ k̂∗p|+ [δk̂ p ◦ k̂∗p]R3

|δk̂ p ◦ k̂∗p| sin|δk̂ p ◦ k̂∗p|, (74)

and then multiplied to the current rotational quaternion

k̂ p[n+1] = Δk̂ p ◦ k̂ p[n]. (75)

For further details see Zupan et al. [23].
Using Eq. (75) we can express the update of rotational

strains. In the fixed basis, we have

κ̂ [n+1]
g (k̂[n+1]) = 2

(
Δk̂ ◦ k̂[n])′ ◦ k̂∗[n] ◦ Δk̂∗

= 2Δk̂′ ◦ Δk̂∗ + 2Δk̂ ◦ k̂′[n] ◦ k̂∗[n] ◦ Δk̂∗

= Δκ̂g + Δk̂ ◦ κ̂ [n]
g ◦ Δk̂∗.

(76)
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Moreover, the transformation of the above expression into
the local frame yields

κ̂
[n+1]
G[n+1] = q̂∗[n+1] ◦ Δκ̂g ◦ q̂[n+1]

+ q̂∗[n+1] ◦ Δk̂ ◦ κ̂ [n]
g ◦ Δk̂∗ ◦ q̂[n+1]

= q̂∗[n+1] ◦ Δκ̂g ◦ q̂[n+1] + q̂∗[n] ◦ κ̂ [n]
g ◦ q̂[n]

= Δκ̂G[n+1] + κ̂
[n]
G[n] .

(77)

4 Numerical examples

A thick cantilever beam, shear loaded double asymmetric
tapered beam, a right-angle cantilever and a beam bent into
a helical form are chosen to test our element. The numerical
implementation of the code was done in Matlab [42]. The
Gaussian quadrature rule is used to evaluate all integrals, in
all our examples, 3 integration points were used. A tolerance
10−8 for Euclidean norm of corrections was chosen to exit
the iteration loop. The quadratic convergence was observed
in all our examples, so we do not display it separately.

Our finite element has a total of 26 degrees of freedom.
Therefore, a beam consisting of ne elements has 19ne + 7
degrees of freedom. The internal degrees of freedom, strain
vectorsγ L/2

g , κ L/2
G and boundary stress resultants N0

g ,M
0
g are

not involved in the stiffness matrix construction process, as
they are condensed at an element level. The matrix parts Ka ,
Kb, Kc and Kd and the vector parts fa and fc are extracted
from the element stiffness matrix Kel and the element resid-
ual vector fel ,

[
Ka Kb

Kc Kd

] [
δyext
δyint

]
= −

[
fa
fc

]
. (78)

The vector of corrections is divided into two parts; exter-
nal [δyext ] = [δr̂0g , δk̂0, δr̂ Lg , δk̂ L ] and internal [δyint ] =
[δ N̂ 0

g , δM̂0
g , δγ̂

L/2
g , δκ̂

L/2
G ] degrees of freedom, which we

calculate separately. All steps within an iteration loop are
represented in pseudo-code 1.

The results are evaluated and compared in the form of a
displacement vector and its components in the global basis
[u]g = [u1, u2, u3]T . All four examples were also modeled
in a commercial finite element software Ansys [43] using a
two-node three-dimensional beam element B188.

4.1 Thick cantilever beam subjected to free-end
transverse force

A thick cantilever beam is subjected to a concentrated force at
the free end, as shown in Fig. 2. The force vector is composed
of two equal transverse components,which inmatrix notation
with respect to global basis g reads [F(L)]g = F[0, 1, 1]T .

Pseudo-code 1 Iteration n
1: while norm( f [n]) > tolerance do
2: for element = 1 to ne do
3: evaluate fel ; � Eqs. (42)-(49)
4: evaluate Kel ; � Eqs. (58)-(65)
5: Kcond = Kc − Kd (K

−1
b Ka);

6: fcond = fc − Kd (K
−1
b fa);

7: Kconst (elDOF, elDOF)+ = Kcond ;
8: fconst (elDOF)+ = fcond ;
9: end for
10: delete(Kconst ( f i x DOF, f i x DOF));
11: delete( fconst ( f i x DOF));
12: δyext = −K−1

const fconst ;
13: δyint = K−1

b ( fa − Kaδyext );
14: evaluate update procedure; � Eqs. (66)-(69), (77)
15: end while

Fig. 2 A cantilever beam subjected to a concentrated force at the free
end

We obtained these results by employing the presented
model and also its modification, in which γ G (translational
strain in local basis) is a primary unknown and a simple
additive update of γ G is used. Note that a detailed derivation
involving γ G (which is not given in this paper but was also
fully integrated in our computer code), can be found e.g. in
papers by Zupan et al. [23,24]. To distinguish between both
formulations we will use labels γ g and γ G . The results are
compared to the ones obtained by commercially available
finite element B188 in Ansys and B31 element from Abaqus
[44]. Even though it is a fairly simple example, different
results can be observed for various finite element codes.

From the convergence analysis, shown in Table 1 we
notice that all elements converge quite rapidly. Our formu-
lations needed 6 iterations in one step to exit the loop, while
B188 elements converged in two load steps. For a system of
50 or more elements, the difference between γ g and γ G ele-
ments is only present at the fifth decimal place. The absolute
difference is approximately linear in logarithmic scale,which
means that the error decreases exponentially with the number
of elements. Figure 3 illustrates deformed configurations for
4 load steps to show the evolution of the deformation.

In order to observe the convergence rate of all quantities
involved in both (γ g and γ G) formulations, we present a
convergence plot in Fig. 4. Relative error is calculated with
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Table 1 Free-end displacement vector components for different number of finite elements

ne = 4 ne = 10
γ g γ G B188 B31 γ g γ G B188 B31

u1 −39.9843 −39.9808 −41.5599 −42.0672 −40.7568 −40.7563 −42.4987 −42.5348

u2 37.7694 37.7670 40.7048 41.1169 38.3319 38.3315 41.5264 41.6201

u3 119.8349 119.8292 122.0192 122.928 121.1590 121.1580 122.5417 122.6921

ne = 20 ne = 50
γ g γ G B188 B31 γ g γ G B188 B31

u1 −40.8675 −40.8674 −42.8238 −42.6723 −40.8985 −40.8985 −42.6746 −42.6951

u2 38.4128 38.4127 41.6851 41.7168 38.4354 38.4354 41.6876 41.7022

u3 121.3469 121.3467 122.8596 122.652 121.3995 121.3994 122.6329 122.6430

ne = 100 ne = 200
γ g γ G B188 B31 γ g γ G B188 B31

u1 −40.9030 −40.9030 −42.6801 −42.6982 −40.9041 −40.9041 −42.6556 −42.6992

u2 38.4387 38.4387 41.7072 41.7437 38.4395 38.4395 41.7324 41.7445

u3 121.4070 121.4070 122.6341 122.6420 121.4089 121.4089 122.6164 122.6420

All results are in millimeters

Fig. 3 Deformed configurations of the cantilever beam subjected to
transverse loads

respect to the value at the final (converged) iteration. After
6 iterations, all degrees of freedom reached their precision
limits, while exhibiting quadratic convergence behaviour.
Afterwards, there is no significant difference in the conver-
gence of the two formulations.

4.2 Double asymmetric tapered beam

Although a thick beam theory accounts for shear defor-
mation, numerical examples found in the literature are
surprisingly often restricted to relatively small shear defor-
mations. To fill this gap, we propose a double asymmetric
tapered beam. The geometry, material properties, bound-
ary conditions and loads are defined such that large shear
deformation is observed (see Fig. 5 for details). The beam
is clamped at one side while all rotation and longitudinal

Fig. 4 Relative error convergence evolution of distinct kinds of degrees
of freedom. Solid line represents γ g elements, while dashed line repre-
sents γ G elements. Model is constructed with 50 elements

displacement components are restrained on the other side.
The beam is subjected to a distributed load, defined with a
vector ng . For one half of the length of the beam, its value
is [n(s)]g = ng[0, 1, 1]T , 0 < s < L/2 and for the other
[n(s)]g = ng[0,−1,−1]T , L/2 < s < L .

The height and width of the cross-section follow linear
relations

B(s) = B0 + BL − B0

L
s and H(s) = H0 + HL − H0

L
s.

Results, given in Table 2, demonstrate the convergence
of the problem for γ g and γ G elements, the B188 element
from Ansys and the B31 element from Abaqus. All results
are obtained with 1 load step.
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Fig. 5 Geometrical model of a thick double asymmetric tapered beam
subjected to distributed loads. One end is clamped, while the other is
connected to a rigid panel through rollers restraining all rotations and
axial displacement

Although the cross-sections are non-uniform, a symmetry
of the problem can be observed from the results of Abaqus
element B31 and our formulation. Results, obtained with
commercial software Ansys converge to different values for
displacement u2(L) and u3(L), being 2.91%and 0.13%apart
from our results. Convergence difficulties were noticed for
γ G formulation and the default loop termination criterion
(10−8) was not reached. The solution (the norm of a resid-
ual vector) was trapped approximately between 10−5 and
10−6. For this reason, the procedure with γ G elements was
stopped after 15 iterations of error norm fluctuation, while
γ g elements needed only 6 on average to converge altogether.
Nonetheless, we notice that values of both, γ g and γ G ele-
ments yield very similar results and have better convergence
rate than both commercial software elements.

Fig. 6 Relative error convegrence evolution of primary unknowns.
Solid line represents γ g and dashed line γ G elements. Model is con-
structed with 50 elements

Figure 6 depicts a relative error convergence plot for all
primary unknowns of the γ g and γ G formulations. Note that
γ g elements reach lower precision limit within less iterations
than γ G elements.

When shear deformation is large, the error accumulates in
every load step. Figure 7 portrays the difference between dis-
placements calculated with both formulations, γ G and γ g ,
for various ratios of shear G and Young modulus E . As the
load increases, the results grow apart, which is even more
evident for cases with smaller rigidity in shear, i.e. where
larger shear strains are developed. The displacement differ-
ence |ug2(L) − uG3(L)| decreases exponentially with the
number of elements for all cases. The last casewith extremely
large shear modulus (grey curve) represents the shear rigid
case which corresponds to the Euler-Bernoulli hypothesis on
perpendicular cross-sections. Even in this case, the differ-
ences are still present.

Table 2 Right-end
displacement vector components
for different finite elements

ne = 4 ne = 10
γ g γ G B188 B31 γ g γ G B188 B31

u2 15.79574 15.77233 15.12098 16.56631 15.85471 15.85122 15.34776 16.72924

u3 15.79574 15.77233 15.36293 16.56631 15.85471 15.85122 15.75427 16.72924

ne = 20 ne = 50
γ g γ G B188 B31 γ g γ G B188 B31

u2 15.86215 15.86128 15.37514 16.75163 15.86418 15.86404 15.40146 16.78049

u3 15.86215 15.86128 15.80817 16.75163 15.86418 15.86404 15.84070 16.78049

ne = 100 ne = 200
γ g γ G B188 B31 γ g γ G B188 B31

u2 15.86447 15.86444 15.40256 16.78132 15.86454 15.86453 15.40283 16.89724

u3 15.86447 15.86444 15.84285 16.78132 15.86454 15.86453 15.84339 16.89724

All results are in millimeters
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Figure 8 depicts shear and bending strain for every
element. Given that the norm of the curvature vector is sub-
stantially smaller than that of the translational strain vector,
we can conclude that this problem is governed mainly by
shear deformation (see the top right inset on both figures).

4.3 L-shaped cantilever beam

A beam with right angle between its segments of equal
length is often studied in the literature [17,25,45]. Due to
its geometry it is suitable for tests of beam formulations
on torsion-bending coupling. With very slender segments
(h/b = 1/50), instabilities can occur during specific load-

Fig. 7 Displacement difference for various shear moduli. We use 4
elements and 10 load steps

Fig. 9 Schematic of a right-angle cantilever beam

ings. Figure 9 illustrates one such case, in which one end is
fixed and the other is subjected to a force acting in the g1-
g2-plane.We also apply an out-of-plane perturbation force in
the direction of the unit vector g3. Hence, the matrix form of
the force vector is [F(2L)]g = F[0, 1, 0.001]T . Geometri-
cal and material properties given in the Fig. 9 are taken from
Ref. [17].

Results presented in Fig. 10 are obtained with 10 ele-
ments (197 degrees of freedom) and 100 load steps. We
compared themwith the results fromSmolenski [17] (20 two-
node elements) and Zupan and Saje [25] (12 elements with
5 interpolation points; 510 degrees of freedom). An excel-
lent agreement can be observed between our results and the
results of these authors. In this case, both elements, based on
γ g and γ G converge and yield practically the same result,
since there is no substantial shear deformation, as shown in
Fig. 11.

(a) (b)

Fig. 8 Deformed configuration for λ = 1 and G = E/2.6. Every element has the color coresponding to the Euclidean norm of a translational
strain vector and b rotational strain vector
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Fig. 10 Lateral post-buckling region of a right angle beam subjected
to an in-plane load

4.4 Beam bent into a helical form

Anexample, introduced by Ibrahimbegović [29] is often used
to illustrate element’s ability to withstand large rotations. A
cantilever beam is subjected to a concentrated force F and a
bending moment M at the free end, as shown in Fig. 12.With
moment M acting alone, the beam would bend into a circu-
lar shape with several revolutions in g1–g3-plane, whereas
a simultaneous action of force F and bending moment M
produces a helical shape.

To test the convergence of finite elements, we vary the
number of elements and compare displacements u2 for F =
50 and M = 200π , see Table 3 for both γ g and γ G formula-

Fig. 12 A cantilever beam subjected to an end force and moment

tions. End force and moment are controlled by a load factor
λ, increasing incrementally from 0 to 1 in 200 steps.

During loading, the height of such composed helix oscil-
lates around zero value. Interestingly, the shape obtained in
the final load step lies on the negative side of g1–g3-plane.
This effect is visible on the out-of-plane displacement u2
diagram in Fig. 13a.

Figure 13b presents a plot of displacement u2 versus load
factor λ. Results of both element types coincide with the
ones found in [23,24,29]. Our construction with 79 elements
(1508 degrees of freedom) is in very good agreement with
result from [25], which was obtained with 25 elements with
8 interpolation points (1506 degrees of freedom).

Since the beam in this case is mainly undergoing bend-
ing deformations, the differences between formulations are
negligible.With the normof translational strain vectors being
relatively small, so is the error of the update. On average, one
additional iteration is needed to reach the convergence crite-
ria. Increasing the number of elements, their length becomes
smaller and thus the difference in rotations between loading
steps leads to better results. For example, Češarek et al. [24]

(a) (b)

Fig. 11 Deformed axis and rotated cross-sections for F = 1.9 N where every element has the color coresponding to the Euclidean norm of a
translational strain vector and b bending strain vector
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Table 3 Free-end displacement
vector components for different
number of elements

ne = 50 ne = 79 ne = 100

γ g γ G γ g γ G γ g γ G

u1 −9.982863 −9.983047 −9.99502 −9.995034 −9.995140 −9.995147

u2 −0.089889 −0.090060 −0.083702 −0.083703 −0.080564 −0.080564

u3 −0.002437 −0.002397 −0.000090 −0.000091 −0.000075 −0.000075

ne = 200 ne = 500 ne = 1000
γ g γ G γ g γ G γ g γ G

u1 −9.995181 −9.995183 −9.995194 −9.995194 −9.995196 −9.995196

u2 −0.077480 −0.077480 −0.076608 −0.076608 −0.076483 −0.076483

u3 −0.000073 −0.000073 −0.000073 −0.000073 −0.000073 −0.000073

(a) (b)

Fig. 13 a Deformed configuration with 100 elements and b free end displacements u2

used 1000 load steps infinite elementmodel composedof 200
constant strain elements, with translational strain expressed
in local basis. Failure of commercial software finite elements
to withstand large rotations was also reported in [24].

5 Conclusions

The present finite element formulation is based on a geo-
metrically exact beam theory. In the derivation of our
computational model, the emphasis is given to consistency
and mathematical accuracy, which inherently results in a
numerically stable formulation. Spatial rotations of cross-
sections are parametrized using quaternion algebra in order
to provide a singularity-free model, capable of describing
large rotations. We choose strain measures as the primary
unknowns and assume them to be constant along the length
of an element. This is the only approximation regarding the
derivation of governing equations. The choice of component
description for the strain vector is supported bymathematical

argument on accurate updating procedure given in Sec. 3.2.
The strain measures are now in fully consistent relationship
with the current configuration, regardless the magnitude of
strains, rotations and displacements. Linearization process
is obtained within variational framework, while the imple-
mentation into the finite element model involves numerical
integration (we applied Gaussian quadrature rule).

In the present model, the interpolation and collocation
points coincide, thus we avoid the interpolation error. The
only way to obtain more accurate results is by employing
more elements in the model. Due to our efficient formu-
lation, this process is not computationally demanding. The
performance of the numerical model is tested on one custom
and three standard numerical examples found in literature.
We showed that even small number of elements yields satis-
factory results when compared to other beam finite element
formulations.

The update of translational strains can be a source of error
in strain based formulations. Compared to the models where
strains are updated in local basis our approach is consis-
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tent with the configuration space. The differences are more
evident for cases with large shear deformation. This effect
is often overlooked in the literature, since vast number of
the beam finite element numerical examples undergo rather
small shear strains. For this reason, we devised an exam-
ple of shear loaded double asymmetric tapered beam. In this
case, shear deformation is characteristically larger than bend-
ing deformation, which consequently results in convergence
difficulties for the elements with inconsistent update of trans-
lational strains. Although the difference in results reduces
exponentially with the number of elements used, the present
approach requires less iterations for the same accuracy.
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24. Češarek P, SajeM, ZupanD (2012)Kinematically exact curved and
twisted strain-based beam. Int J Solids Struct 49(13):1802–1817

25. Zupan D, Saje M (2003) Finite-element formulation of geometri-
cally exact three-dimensional beam theories based on interpolation
of strain measures. Int J Solids Struct 192(49–50):5209–5248

26. Stuelpnagel J (1964) On the parametrization of the three-
dimensional rotation group. SIAM Rev 6(4):422–430

27. Pimenta PM, Campello EMB, Wriggers P (2008) An exact con-
serving algorithm for nonlinear dynamicswith rotationalDOFs and
general hyperelasticity. Part 1: rods. Comput Mech 42(5):715–732

28. Neto AG, Martins CA, Pimenta PM (2014) Static analysis of off-
shore risers with a geometrically-exact 3D beam model subjected
to unilateral contact. Comput Mech 53(1):125–145
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