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We present the results of an experimental investigation on the
crystallography of the dimpled patterns obtained through wrin-
kling of a curved elastic system. Our macroscopic samples comprise
a thin hemispherical shell bound to an equally curved compliant
substrate. Under compression, a crystalline pattern of dimples self-
organizes on the surface of the shell. Stresses are relaxed by both
out-of-surface buckling and the emergence of defects in the quasi-
hexagonal pattern. Three-dimensional scanning is used to digitize
the topography. Regarding the dimples as point-like packing units
produces spherical Voronoi tessellations with cells that are poly-
disperse and distorted, away from their regular shapes. We analyze
the structure of crystalline defects, as a function of system size.
Disclinations are observed and, above a threshold value, dislocations
proliferate rapidly with system size. Our samples exhibit striking
similarities with other curved crystals of charged particles and
colloids. Differences are also found and attributed to the far-from-
equilibrium nature of our patterns due to the random and initially
frozen material imperfections which act as nucleation points, the
presence of a physical boundarywhich represents an additional source
of stress, and the inability of dimples to rearrange during crystalliza-
tion. Even if we do not have access to the exact form of the
interdimple interaction, our experiments suggest a broader generality
of previous results of curved crystallography and their robustness on
the details of the interaction potential. Furthermore, our findings open
the door to future studies on curved crystals far from equilibrium.
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The classic design of a soccer ball, with its 20 hexagonal
(white) patches interspersed with 12 (black) pentagons, the

buckminsterfullerene C60 (1), virus capsules (2), colloidosomes
(3), and geodesic architectural domes (4) are all examples of
crystalline packings on spherical surfaces. In contrast with crys-
tals on flat surfaces, these structures cannot be constructed from
a tiling of hexagons alone. Instead, disclinations––nonhexagonal
elements such as the 12 pentagons on a soccer ball––are required
by topology (5, 6), which constrains how the crystal order must
comply with the geometry of the underlying surface. For example,
seeding a hexagonal crystal with a pentagon (fivefold disclination)
disrupts the perfect hexagonal symmetry and introduces a local-
ized stress concentrator, which can be relaxed through out-of-
plane deformation with positive Gaussian curvature (7, 8). Like-
wise, a heptagon (sevenfold disclination) induces a disturbance
with negative Gaussian curvature.
An example of a physical realization of curved crystals is found

in experiments on colloidal emulsions, where equally charged
particles self-organize at the curved interface of two immiscible
liquids (3, 9–11). These experiments build upon a wealth of previous
theoretical and numerical investigations, as reviewed by Bowick
and Giomi (12). For small system sizes, similarly to the soccer ball
above, the “simplest” spherical crystals have exactly 12, fivefold
disclinations, located at the vertices of a regular icosahedron (13).
When the number of particles is sufficiently large, additional
defects known as dislocations (5–7 disclination dipoles, which are
not required by topology) emerge and break the translational
order and lower the energy of the crystal more efficiently than
pentagons alone (14, 15). In spherical packings with large number
of particles, dislocations typically connect into linear chains to

form scars (16) (strings of dislocations attached to a pentagonal
disclination) and pleats (10) (strings of dislocations), which in
contrast with flat space, start and terminate within the crystal (16).
It is therefore organized collections of dislocations, rather than
disclinations or isolated dislocations, that predominantly screen
curvature in large systems. Disclinations, dislocations, and chains
of dislocations interact not only with each other (e.g., through
elasticity of the crystal), but also with the curvature of the sub-
strate by a geometric potential that depends on the particular type
of defect (17). Their total number and arrangement is primarily
dictated by energetics, in addition to the topological constraints
on the number of excess disclinations. The challenge in ratio-
nalizing these systems is enhanced by the fact that the number of
metastable states grows exponentially with system size (18).
Crystallography on curved surfaces has also been considered

in the context of deformable elastic membranes with internal
crystalline order (8, 12). Elastic stresses in membranes, adhered
to curved substrates (19–21), can be relaxed either by (i) out-of-
surface buckling through wrinkling for compliant substrates, or
(ii) the in-surface proliferation of topological defects for rigid
substrates. For example, out-of-plane deformations in free-
standing graphene sheets have been directly linked to energy
minimization in the neighborhood of topological defects (22).
Here, we study a macroscopic model system in which a curved

crystal arises from the wrinkling of a hemispherical shell bound
to an equally curved compliant substrate (schematic in Fig. 1A).
The dimpled pattern (Fig. 1B) self-organizes from an originally
smooth surface when the sample is compressed and eventually
buckles to relax the stress induced by depressurizing an un-
dersurface cavity. Profilometry through laser scanning pro-
vides access to the topography of the patterns (Fig. 1D). From
the positions of dimple centers, we construct spherical Voronoi tes-
sellations (Fig. 1E) and find a striking agreement between the
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Voronoi construction and the network of ridges of the experi-
mental pattern. We therefore regard the dimples as (point-like)
packing units that repel one another, due to storage of elastic
strain energy, which themselves form a continuum elastic shell.
As such, we study the nucleation process and quantify the defect
structure of our wrinkling patterns (Fig. 1F). By drawing analo-
gies with the packing of particles on curved surfaces, we find that
our system relaxes stresses both by out-of-surface buckling
through the formation of arrays of dimples, and by simulta-
neously developing topological defects in these patterns. More-
over, our macroscopic system is found to mimic many of the
identifying features of other curved crystals (9, 10) (a priori far
from obvious, given the difference of the underlying physics),
despite some important differences in the morphology of defects
and their rapid growth with system size that we attribute to the
far-from-equilibrium nature of our system.

Wrinkling on Curved Surfaces: Our Experiments
We have recently introduced an experimental system to study
wrinkling on curved surfaces, as smart morphable surfaces for
aerodynamic drag reduction (23). Periodic wrinkling patterns
emerge from the mechanical instability of a thin stiff film adhered
to a soft foundation under compression. Whereas wrinkling of
flat-plate–substrate systems is well understood (24–26), inves-
tigations of the curved counterpart have been mostly limited to
numerics (26–28) and microscopic experiments (29, 30), where it
is challenging to independently tune the control parameters.
Our centimetric hemispherical samples (radius R) comprise

a thin–stiff shell adhered to a soft–thick substrate and were
fabricated out of silicone-based elastomers using rapid proto-
typing techniques (see the schematic in Fig. 1A andMaterials and
Methods for the fabrication details and ranges of parameters).
Using the pneumatic apparatus shown in Fig. 1C, a pressure
difference Δp= pa − pi can be set up between the outside atmo-
spheric pressure, pa and pi, inside the undersurface cavity of radius
r. Above a critical load, an undulatory wrinkling pattern emerges
from the originally smooth shell (Fig. 1B), with a characteristic
wrinkling wavelength λ dictated by the combination of geometric
and material properties of the film and substrate.

We have found (23) that the curvature of the substrate leaves
the wrinkling length scale unchanged, compared with that pre-
dicted for flat infinite substrates (25),

λ= 2πh

"
1− ν2s
1− ν2f

Ef

3Es

#1=3

; [1]

where h is the thickness of the film, and Ef , νf and Es, νs are the
Young’s moduli and Poisson’s ratios of the film and substrate, re-
spectively. However, curvature of the substrate (23, 29, 30) and the
level of overstress (29, 31) can affect the pattern selection mode.
For h=RK 0:01 (and low overstress) labyrinthine patterns were
found (23). On the other hand, for h=RJ 0:01 we observed dim-
pled patterns that pack in a hexagonal-like crystal structure (Fig.
1B). From here on, we focus exclusively on these dimpled patterns
to characterize and analyze their crystallographic structure.

Three-Dimensional Scanning and Spherical Voronoi
Construction
The full 3D surface profile of the samples was digitized using
a laser scanner (Fig. 1C). In Fig. 1D, we present the resulting
topographic map of the radial surface depth d (measured from
the outer spherical surface) for a representative fully developed
dimpled pattern. Dimples (blue regions) are crater-like depres-
sions, separated by ridges (red regions). Using an image pro-
cessing algorithm developed in-house (Materials and Methods),
we identify the spherical coordinates of the centers (local minima
of d) of all of the dimples in a sample (yellow markers super-
posed in Fig. 1E). With the coordinates of the dimple locations
at hand, we then construct a spherical Voronoi tessellation
(black lines superposed in Fig. 1E).
It is remarkable that the skeleton provided by the Voronoi

construction accurately delineates the underlying network of ridges
of the experimental pattern (Fig. 1E), suggesting that each dimple is
well represented by the corresponding Voronoi cell. As such, the
dimples can be regarded as quasi-particles with characteristic in-
terparticle distance λ (given by Eq. 1). Because the system is under
compression, these quasi-particles repel one another through an
elastic potential, the precise characterization of which would re-
quire a detailed theoretical description that goes beyond the scope
of our experimental work. We regard our dimpled patterns as self-
organized tilings of a well-defined individual unit––the dimple––that
packs into a quasi-hexagonal arrangement constrained by the un-
derlying curved surface. In Fig. 1F, we show an example of the
output of our procedure: a Voronoi tiling, where each dimple is
replaced by the corresponding Voronoi cell. This representation
will be used extensively below, to analyze our patterns.

Crystallization of the Dimpled Patterns
We first turn to the process of nucleation and then describe the
structure of the fully developed crystalline patterns.

Nucleation. In Fig. 2 A–H we present snapshots (top views) of one
of our samples during a loading and unloading cycle, starting
from a spherical (undeformed) configuration at Δp= 0 kPa,
loading it up to a maximum of Δp= 76:4 kPa, and then unloading
to Δp= 6:5 kPa (the experimental uncertainty of all pressure
measurements is ±0:12 kPa). This particular sample has radius
R= 20:0 mm and a characteristic dimple size of λ= 4:40± 0:60 mm
(set by Ef = 2:10± 0:11 MPa, Es = 0:23± 0:01 MPa, νf = νs ≈ 0:5,
and h= 0:48± 0:07 mm that is determined from Eq. 1, Materials
and Methods).
A few dimples first emerge, nonuniformly (Fig. 2A, Δp= 6:5

kPa). These are small regions of the initially smooth shell that
buckle inward and eventually act as nucleation sites from which
the rest of the pattern progressively grows with Δp (e.g., Fig. 2 B
and C, Δp= 13:1 kPa and 23.4 kPa, respectively). The front of
the crystalline phase spreads into the undimpled portions of the
shell, until full coverage of the hemisphere is attained (Fig. 2D,
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Fig. 1. Wrinkling patterns on hemispherical samples. (A) Schematic diagram of
the setup. (B) Experimental sample: PDMS shell (radius R= 20:0 mm, thickness
h= 0:53± 0:05 mm, Young modulus Ef = 2:10 MPa, Poisson ration νf ≈ 0:5) ad-
hered to a VPS substrate (Es = 0:23 MPa, νs ≈ 0:5, radius of cavity, r = 9:5 mm).
Undeformed configuration (at Δp= 0) and wrinkled pattern (at Δp= 76:4 kPa)
with characteristic wavelength, λ= 4:83± 0:45 mm (uncertainty is SD of all
dimples). (C) Experimental apparatus: 3D scanner, pneumatic system, and pres-
sure data acquisition system. (D) Surface profile of dimpled pattern. (E) Skeleton
of the spherical Voronoi construction (black lines) obtained from the centers of
the dimples (yellow circles), superposed on surface profile. (F) Voronoi tessella-
tion, color coded according to the coordination number.
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Δp= 40:3 kPa). Beyond this point, and up to Δp= 76:4 kPa, the
maximum depressurization explored (Fig. 2E), there is no rear-
rangement of the dimples. The unloading path is, however, qual-
itatively different. Gradually decreasing the differential pressure
from Δp= 76:4 kPa results in patterns whose morphology remains
approximately unchanged (Fig. 2 E–G). Back at Δp= 6:5 kPa, the
configuration in Fig. 2H is remarkably different from that of Fig.
2A, which is significant of hysteresis.
In Fig. 2I, we quantify this hysteretic behavior by plotting the

average depth of dimples d as a function of Δp. For Δp< 40:3 kPa
(partial coverage of the sample), there are three distinct paths in the
mechanical response: one for the first loading ramp and the other
two for subsequent unloading and loading cycles. All paths converge
above Δp≈ 40 kPa (beyond which the full sample is crystalline),
and up to the maximum Δp≈ 75 kPa explored. Note that our
system is elastic, the viscosity of the elastomers we use is negligi-
ble, and there is no delamination between the film and substrate.
As such, we attribute this hysteretic behavior to the series of
multiple snap-buckling events that must occur on the initially
smooth spherical shell for each of the individual dimples to form.
We highlight that the position of each dimple remains fixed

after nucleation and throughout the evolution of the pattern (Fig.
2 A–D, 0<Δp½kPa�< 40:3). Moreover, repeating the experiments
with the same sample leads to identical patterns. The loci of nu-
cleation occur presumably at regions of “frozen” material imper-
fections (e.g., due to small air bubbles trapped in the elastomer

during curing). The appearance of subsequent dimples propagates
from these nucleation sites, which we therefore refer to as anchor
dimples, until the full surface crystallizes. Interestingly, the depth of
these anchor dimples does not differ significantly ðK 5%Þ from the
average dimple depth once the pattern is fully developed. The
mechanism by which anchor dimples emerge is still uncertain.
However, based on the work of Paulose and Nelson (32), we
speculate that frozen imperfections may generate small soft regions
on the cap, which can snap-buckle.

Structure of the Crystalized Dimpled Patterns. We now make use of
the Voronoi representation introduced above to further analyze
the experimental patterns. In Fig. 3 A–F we show a series of
examples of Voronoi tilings superimposed on top of the scanned
data for samples with increasing values of R=λ, a measure of the
relative system size, attained by changing the shell thickness in the
range 0:23< h½mm�< 0:88 (which modifies λ through Eq. 1),
while keeping all other parameters fixed (R= 20:0 mm, r= 9:5
mm, and Ef=Es = 9:13). Note that larger values of R=λ correspond
to thinner shells because λ∼ h. Regions shaded in gray represent
bands of dimples which were taken into account for identifying
the coordination number (i.e., number of neighbors) of the
dimples inside the solid green line, but otherwise omitted from
further quantitative analysis. The coordination numbers of these
border dimples are undetermined and they cannot be interpreted
under our framework of packing of point-like units. The domain
of interest is thus reduced from a hemisphere to a spherical cap.
For all samples in Fig. 3 A–F, the most prominent cells are

hexagonal (in blue) as expected from crystallinity. As R=λ is in-
creased, pentagonal and heptagonal defects (yellow and red,
respectively) become more prominent. The “simplest” lattice
structure is found for R=λ= 2:21 (Fig. 3A), representative of
small system sizes, with seven hexagons and three isolated pen-
tagonal disclinations. For R=λ= 3:75 (Fig. 3B), series of dislo-
cation defects (5–7 disclination dipoles) appear, in addition to
hexagons and isolated pentagons. This pattern comprises one
isolated pentagonal disclination, two isolated dislocations, and
two strings of dislocations which resemble a scar and a pleat.
Note, however, that a true scar and pleat would start and ter-
minate in the interior of the curved crystal (33), but in our case
they often do so at the boundary. Still, the overall scenario in our
experimental patterns is analogous to that found in other curved
crystals (9–11). For even larger sample sizes (see Fig. 3 D–F, for
R=λ> 4:71), there is a proliferation of more complex arrange-
ments of defects with clusters, as well as strings of dislocations
that are increasingly longer and branched. By contrast, branching
of linear arrays of dislocations, as well as isolated dislocations in
large system sizes, would not occur in crystals at equilibrium.
In Fig. 3G, we present the cap ratio α, the ratio between the area

of the spherical cap that is analyzed and the area of the corre-
sponding full sphere 4πR2, as a function of R=λ. As expected, α
increases with R=λ; the relative size of the dimples decreases, and
the required exclusion band is increasingly smaller. The sharp drop
in α for R=λJ 6:5, however, is due to a technical difficulty in our
3D scanning procedure that forced us to only acquire top-view
scans for these samples with smaller dimples (instead of the full
hemispherical surface obtained from the stitching of multiple
perspectives, for R=λK 6:5). The white annuli in Fig. 3 E and F
represent the portions of the samples that were not scanned.

Polydispersity and Topology of Dimples.We proceed by quantifying
the area of the Voronoi cells that underlies the crystalized
dimpled patterns, as well as the topology of their tilings. For this,
we consider statistical ensembles of the individual cells associated
with each dimple, whose coordination number allows for their
classification as pentagons, hexagons, or heptagons. By way of
example, we focus on a set of nine samples (R= 20:0 mm,
Ef=Es = 9:13 and λ= ð3:07± 0:10Þ mm; the uncertainty is the SD
of the mean of the set), each with ∼180 dimples.
Polydispersity is measured using the ratio Ap =Ai=Ahex, where

Ai is the area of each Voronoi cell, and Ahex =
ffiffiffi
3

p
λ2=2 is the area
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Fig. 2. Crystallization of the dimpled patterns. (A–H) Top-view snapshots of
the surface profile during a loading–unloading cycle. (A–E) Loading with
increasingΔp= ð6:5,13:2,23:4,40:3,76:4Þ kPa. (E–H) Unloading at the same values
of Δp. Anchor dimples in A are marked with circles. (I) Experimental measure-
ments of the average dimple depth d as a function of Δp. Three loading paths
(increasing Δp) and two unloading paths (decreasing Δp) are shown. Solid lines
are guides to the eye and the labeled data points correspond to the patterns inA–
H. The shell thickness is h= 0:48± 0:07 and other parameters identical to Fig. 1.
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of a regular Euclidean hexagon with a distance λ (defined in Eq. 1)
between the parallel sides. A constant value of Ap = 1 for all cells
would correspond to a perfectly monodisperse hexagonal pat-
tern, which is, however, unattainable in a curved system. In
Fig. 4A, we present the probability density function (PDF),
PðApÞ, of all Voronoi cells in the ensemble. We find that PðApÞ
is well described by a Gaussian distribution, PðApÞ= ½1=ðσ ffiffiffiffiffi

2π
p Þ�

exp½−ðAp −A
pÞ2=ð2σ2Þ�, with a mean A

p
= 0:98 and SD σ = 0:12.

The near-unity value of A
p
is indicative of the hexagonal crys-

talline packing but the significant SD conveys that the dimples
are polydisperse. We have also classified the area of each cell
according to its coordination number, Ap

7, A
p
6, and Ap

5, for hepta-
gons, hexagons, and pentagons, respectively. The corresponding
relative PDFs, normalized such that

R∞
0 P7dAp

7 +
R∞
0 P6dAp

6 +R∞
0 P5dAp

5 = 1 are also Gaussian distributed (see fits in Fig. 4A).
Whereas P6ðAp

6Þ is still peaked near unity, ðAp

6; σ6Þ= ð0:99; 0:11Þ,
there is a splitting for the mean areas for heptagons and pentagons,
ðAp

7; σ7Þ= ð1:07; 0:12Þ and ðAp

5; σ5Þ= ð0:88; 0:10Þ, respectively. Note
that this splitting occurs nearly symmetrically from A

p
. The high

coefficients of variation, σi=Ap
i ≈ 11%, indicate a high degree of

polydispersity for all families of cells.
In addition to polydispersity, we quantify the morphology of

the Voronoi cells by measuring their shape factor, ζ=C2
i =ð4πAiÞ,

where Ci and Ai are the perimeter and surface area of each cell,
respectively (34, 35). This quantity accounts for both the topol-
ogy and the level of distortion of each Voronoi cell. The shape

factor is ζ= 1 for a circle and ζ> 1 for all other shapes. For
example, regular pentagons, hexagons, and heptagons have
ζn = n=πtanðπ=nÞ with n= 5; 6, and 7, respectively.
In Fig. 4B, we plot the PDF for shape factor of all cells, PðζÞ.

Similarly to PðApÞ above, we also superpose the relative PDFs
for the families of heptagons, hexagons, and pentagons, nor-
malized such that

R∞
1 P7dζ7 +

R∞
1 P6dζ6 +

R∞
1 P5dζ5 = 1. The pro-

bability of finding a particular polygon peaks sharply after the
value of shape factor that corresponds to its regular shape:
ζ≈ 1:073; 1:103, and 1.156 for regular heptagons, hexagons, and
pentagons, respectively. After these peaks, the corresponding pro-
babilities decrease but remain finite for an extended range of ζ.
Moreover, the PDF for all cells PðζÞ is nonzero in the broad in-
terval of shape factors 1:073< ζ< 1:299, meaning that the tilings of
our dimpled patterns consist of irregular Voronoi cells. To illustrate
this spread, we show in Fig. 4C representative examples of cells
obtained by sampling the PDFs at specific values of ζ, for each of
the polygon families. For example, at ζ= 5=πtanðπ=5Þ, the value for
a regular pentagon, distorted hexagons, and heptagons are also
found. Likewise, for a specific family, increasing ζ corresponds to
increasingly more distorted polygons.

Quantification of the Defect Structure
Thus far, we have learned that the tilings of our dimpled
patterns consist of polydisperse Voronoi cells, with a distribu-
tion of distorted polygons, away from their regular shapes.
Whereas previous studies focused on more monodisperse
systems (9, 10, 16), Euler’s packing theorem is applicable to
general tilings. As such, we follow an approach similar to that
of refs. 9, 10 and quantify the defect structure versus system
size R=λ for 32 samples in the range 2:09< λ½mm�< 8:01
(0:23< h½mm�< 0:88, while fixing R= 20 mm and Ef=Es = 9:13).

Net Defect Charge. The topological charge q= πs=3 is commonly
used to quantify defects of curved crystals (12), where the dis-
clination charge,

A B C

D E F

G

Fig. 3. Voronoi tessellations and structure of defects. (A–F) Top views of tilings
superimposed on the scanned data with increasing values of dimensionless sys-
tem size, R=λ= ð2:21,3:75,4:71,6:20,7:56,9:06Þ, respectively. Pentagonal, hexag-
onal, and heptagonal cells are colored in yellow, blue, and red, respectively.
Physical edges (equators) of the shell samples are encircled black. Only the
regions inside the pseudoboundary represented by the thick-solid green enve-
lope were analyzed. Dimples outside this green boundary were not considered.
The surface regions in the white annulus were not scanned. (G) Ratio between
the area of a spherical cap and the area of the corresponding full sphere α as
a function of R=λ. The samples from A–F are marked with red diamonds.
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Fig. 4. Polydispersity and distortion of Voronoi cells. (A) Probability density
function of dimensionless area of Voronoi cells A*. Area of each cell is
normalized by the area of regular hexagons, Ahex =

ffiffiffi
3

p
λ2=2, for a character-

istic dimple size λ. Gaussian distribution fits are represented with solid lines.
(B) PDF of shape factor ζ. Vertical lines located at the corresponding values
for regular pentagons, hexagons, and heptagons, ζn =n=πtanðπ=nÞ, with
n= 5, 6, and 7, respectively. (C) Representative Voronoi cells for specific
values of ζ. Regular polygons are marked with “R.”
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s= 6−Z; [2]

is the deviation of the coordination number Z from that of
a perfect hexagonal packing; s=+1 for a pentagon and s=−1 for
a heptagon, i.e., q=+π=3 and q=−π=3, respectively. From the
Gauss–Bonnet and Euler theorems (5, 6), it follows that, for any
triangulation over a spherical surface, there exists a fixed topo-
logical constraint on the sum of these discrete charges (+12 on
a sphere). We define the net topological charge for an ensemble
of Nα lattice units on a spherical cap with area 4πR2α (the area
ratio α was quantified in Fig. 3G for our samples) as

Qα =Qα=
XNα

i

qi = 4πα: [3]

We now analyze our data following a procedure recently used for
curved colloidal crystals (10). For a given sample, we measure the
net defect charge Qβ of spherical “patches” of variable area (de-
fined by the ratio β of their area with that of a sphere; Fig. 5A,
Inset) up to the maximum possible cap allowed for that sample
(Fig. 3G), such that 0 < β ≤ α. Such a measurement includes both
the effects of isolated disclinations and the polarization charge due
to the nonuniform distribution of disclination dipoles [by analogy
with electrostatics (10)]. In this procedure, the contribution to the
polarization charge is accounted for by the cumulative counting
when the boundary of the analyzed patches with increasing sizes
dissects a pleat or a dislocation and adds toward the total topo-
logical charge, which would not occur for a full sample. In Fig. 5A,
we plot this net defect charge as a function of the integrated
Gaussian curvature,

R
GdA= 4πβ, of the patches (G= 1=R2 in our

spherical case) for multiple samples with different values of R=λ.
The data are consistent with a linear relation between defect
charge and integrated Gaussian curvature, with unit slope, that was
likewise previously observed on curved crystals, albeit with a sig-
nificant level of scatter that is also consistent with the experiments
in ref. 10. It is striking that, despite the differences in the un-
derlying physics of the two curved systems, our macroscopic
wrinkling patterns and colloidal packings can be analyzed and
interpreted similarly.

Average Coordination Number. Given the scatter in Qβ, we turn to
the average coordination number Z= ð1=NÞPN

i=1Zi for a tiling
with N dimples. However, before quantifying Z, we step back and
consider the number of dimples Nα in our samples, as a function
of R=λ. For large systems, where R is large compared with λ and
the hexagonal cells far outnumber disclinations, we assume that
the area of each dimple is Ai ≈ ð ffiffiffi

3
p

=2Þλ2. This is supported by the
above finding that A

p ≈ 1 (Fig. 4A). In turn, the total number
of dimples on a spherical cap is Nα ≈ 4πR2α=Ai, which yields

Nα ≈
8παffiffiffi
3

p
�
R
λ

�2

: [4]

In Fig. 5B, we plot the experimental measurements for Nα=α
(extrapolated to a sphere), which are in excellent agreement with
Eq. 4 (solid line).
Toward determining Z, the average net topological charge per

lattice unit is Qα=Nα = ð1=NαÞ
PNα

i=1qi = 4πα=Nα, through Eq. 3.
Combining this result with the definition of q and making use
of Eqs. 2 and 4 gives

Z≈ 6

"
1−

ffiffiffi
3

p

4π

�
R
λ

�−2
#
: [5]

A more general version of Eq. 5 was provided by Nelson (7) but,
for completeness, we have reproduced the argument applied
specifically to our system.
In Fig. 5C, we plot Z measured directly from our samples, as

a function of system size, finding that the data are in very good
agreement with Eq. 5. A perfect hexagonal packing (e.g., on
a plane or a cylinder) would have Z= 6, but the presence of

defects forces Z< 6. Moreover, the deviations from the planar
result (horizontal dashed line in Fig. 5C, at Z= 6) become more
pronounced for smaller systems, as the relative importance of
pentagonal disclination increases.

Number of Dislocations. Further, we quantify the total number of
dislocations Nd

α for our dimpled patterns. In Fig. 5D, we plot Nd
α=α

(experimental value for the spherical cap extrapolated to a sphere)
as a function of R=λ. We find that the number of dislocations grows
linearly with system size, Nd

α=α∼ ðR=λÞ, with a slopem= 28:3± 2:8
and an intercept with the horizontal axis, ðR=λÞc = 3:2± 0:7. This
finite value of ðR=λÞc is significant of a threshold system size for the
onset of dislocations, below which only isolated, topologically re-
quired disclinations are found. Through Eq. 4, this translates into
a sample with a threshold number of dimples, Nc ≈ 150 (after ex-
trapolating to a sphere using α).
Remarkably, this scenario is qualitatively identical to that of

Bausch et al. (9), who found ðR=λÞc ≈ 5, for a system of colloidal
particles on the surface of spherical oil droplets which had pre-
viously been predicted by theory (16, 33), and a critical system size
of Nc ≈ 360 particles. These similarities are despite the fact that
the system of Bausch et al. (9) was microscopic, whereas ours is
macroscopic, and in the measurement procedure for the number
of dislocations, they took the average number of dislocations per
chain, detached from the boundary, whereas we used all chains
because they regularly emanate from the boundary.

Discussion and Conclusion
We have introduced a macroscopic experimental model system
where a curved crystalline pattern of dimples self-organizes from
the wrinkling of an originally smooth thin elastic shell. The system

A B

C D

-
2.0 10.06.04.0 8.0

1.0

1.0

Fig. 5. Quantification of defects. (A) Net defect charge (sum of disclination and
polarization charges) on spherical patches of variable size (within a given sam-
ple, with a patch-to-sphere area ratio in the range 0 < β ≤ α), as a function of
integrated Gaussian curvature 4πβ. The adjacent color bar represents system size
R=λ. Different markers are used to better identify different data points. (Inset)
Purple lines represent the edges of the analyzed spherical patches, with in-
creasing values of β. (B) Number of counted dimples Nα=α (extrapolated to a full
sphere) vs. R=λ. Solid line is prediction from Eq. 4. (C) Average coordination
number Z as a function of R=λ. Solid line is prediction from Eq. 5, dashed line is
Z =6. (D) Number of dislocations Nd

α=α (extrapolated to a full sphere) as
a function of R=λ. The solid line is a linear fit with slope 28.3 (±2:8 SD) and in-
tercept with horizontal axis at ðR=λÞc = 3:2 (±0:7 SD.). See Materials and Meth-
ods for details on the geometric and material properties of the 32 samples used.
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relaxes stresses both by out-of-surface buckling through the forma-
tion of arrays of dimples, and by simultaneously developing defects
as nonhexagonal dimples in the otherwise hexagonal patterns. Di-
rect parallels were established between the structure of defects in
our system and previous studies on the packing of charged particles
on curved surfaces (14–16) and curved colloidal crystals (9, 10),
despite the differences in the underlying physics. These similarities
include the ability to treat the dimples as point-like units, the use of
Voronoi tessellation to characterize their packing, as well as the
presence of disclinations and, above a threshold system size, the
prominent growth of the number of dislocations to screen the un-
derlying curvature. There are however few important distinctions.
We observe dislocations that form branched arrays and clusters and
proliferate more rapidly than in curved colloidal crystals (9, 16), and
with a different threshold value of system size. We speculate that
these differences may be attributed to the fact that we have
a different repulsive potential and our system is far from equi-
librium due to the random and initially frozen material imper-
fections that nucleate the pattern, as well as the inability for the
dimples to rearrange during crystallization. Consequently, these
constraints prevent our system from exploring phase space and
lead to additional frustration that increases disorder.
The interaction potential between neighboring dimples in our

system is still unknown. However, Bowick et al. (33) find that
potentials of the form 1=rγ , with 0< γ < 2, lead to similar defect
structures. This provides a possible explanation as to why,
despite the different nature of the interdimple elastic potential in
our wrinkling system, we still find many of the general features of
other 2D curved crystals. We hope that our experimental results
will instigate further studies of curved crystallography in more
complex geometries (e.g., on a torus) and in instances of far from
equilibrium (e.g., with anchoring imperfections), which remain
largely unexplored.

Materials and Methods
Fabrication of Samples. We manufactured 32 hemispherical samples, made of
silicone-based elastomers, polydimethylsiloxane (PDMS) and vinylpolysiloxane
(VPS), for the film and the substrate, respectively, using a protocol that was
described previously (23). First, a thin outer shell was made by coating
a previously vacuum-formed polystyrene mold with the desired radius. The

coating process included wetting the surface of the mold and then draining the
excess polymer by gravity. A balance between gravity, viscosity, surface tension,
and polymerization rate yielded shells of constant thickness (to within ∼ 10%
variation). This process could be repeated multiple times to obtain thicker shells.
Next, pouring the VPS into the mold (now containing the fully polymerized thin
shell) produced the soft foundation. Immediately after the elastomer was cast,
the mold was covered with an acrylic plate containing a spherical 3D printed
part, which produced the undersurface cavity. Upon curing and demolding, the
samples were stored in a ventilated area for 1 wk to fully cure before the ex-
perimental tests were performed.

Material and Geometric Properties. The mechanical properties of PDMS and VPS
were measured on cylindrical specimens subjected to uniaxial compression using
a material testing machine (Zwick). We found a linear stress–strain response of
these materials within the levels of compression relevant to our experiments. The
ratio between the Young moduli of the film and substrate could be controlled
within the range 1:0≤ Ef=Es ≤ 162:0 (for differentmixtures of the base and curing
agents), whereas the Poisson ratios of the film and the substrate was νf = νs ≈ 0:5.
The thickness of the shell was varied in the range 0:23<h½mm�< 0:88, while
fixing the radii of shell, R= 20:0 mm, and the cavity, r = 9:5 mm.

Three-Dimensional Scanning and Image Analysis. The surface topography of the
dimpled patterns on the hemispherical samples was digitized using a 3D laser
scanner (NextEngine) and the resulting cloud of points was postprocessed using
MATLAB. The Cartesian coordinates ðx,y,zÞ of each point were converted into
spherical coordinates ðϕ,θ,ρÞ, where ϕ and θ are the azimuth and polar angles,
and ρ is the radial distance from each point to the centroid of the sphere that
best fits the outer surface of the sample. In our analysis we used a stitched
combination of ðϕ,θ,ρÞ and ðx,y,ρÞ coordinate representation to address the
distortion of the ρðϕ,θÞ map at small polar angles. A gray-scale image using
ρ as the field variable was thresholded into black and white binaries, corre-
sponding to valleys of the dimples and the ridges, respectively. Determining
the centroids of all black blobs yielded the coordinates of the centers of all
dimples, from which the final Voronoi tessellation was constructed.
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