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a b s t r a c t

We present a procedure for numerical computation of elastic–plastic bending and springback of beams
with asymmetric cross-sections. Elastic-nonlinear hardening behavior of the material is assumed and
both isotropic and kinematic hardening models are considered. The strains are described as a function of
rotation and shift of the neutral axis and the curvature of the beam. Exact geometric expressions for
large deflections and large rotations are taken into account during bending process. A complete loading
history is taken into account including the effect of the local loading during the monotonic decrease of
the load. Numerical examples confirm a strong influence of the load on the final and springback rotation
of the neutral axis, its shift, and curvature of the beam for different cross-sections and materials.
A custom made forming tool was designed and manufactured in-house to experimentally evaluate the
proposed solution procedure. It is shown that relative difference between experimentally and
theoretically predicted results of the final radius of curvature of the formed beam is 0.17770.683%,
if also the effect of pre-strain on elastic modulus is taken into consideration.

& 2014 Published by Elsevier Ltd.

1. Introduction

Either as vital parts of load-bearing structures in mechanical
and civil engineering or merely as an aesthetic feature in archi-
tecture, curved beams are most commonly made via some sort of
forming process. V-bending, roll-bending, air and edge-bending,
hydroforming, etc. are some of the examples of technological/
manufacturing processes for obtaining the desired shape. The
prediction of the (final) shape can be a complex task, especially
because real-life materials often exhibit nonlinear mechanical
response to loading.

In the forming process, the material undergoes elastic–plastic
deformations. The plastic part of deformation changes the original
shape of the object permanently, whereas the elastic part returns
the deformed shape back towards initial configuration. Since a
certain amount of elastic deformation is practically always present,
the final shape of the object is not the same as the shape of the
forming tool itself. A common way to deal with this problem is to
add special techniques to reduce the effect of elastic recovery (also
known as springback), such as extra features in radii, using smaller
radii, or varying blankholder force in the forming process. These
techniques reduce the effect of springback, but the formed part
will always tend to springback by a certain amount.

In the available literature one can find a considerable number
of papers devoted to this subject. Kosel et al. [1] presented an
analytical solution of the simplified model for predicting the
springback of beams made from material with an elastic-linear
hardening response. The beams were subjected to repeated pure
bending and unbending process and complete strain history was
considered. The influence of axial force on the bending and
springback of the elastic–ideal plastic beam was investigated by
Yu and Johnson [2]. Johnson and Yu [3] developed formulas for
springback of beams and plates undergoing linear work hardening.
Springback of equal leg L-beams subjected to elastic–plastic pure
bending was described by Xu et al. [4]. A theoretical model to
predict the final geometrical configurations of wires made of
different materials after loading and unloading was proposed by
Baragetti [5]. Although analytical solutions can be obtained only
for relatively simple problems. Their advantage is that they enable
better insight and understanding of the problem and the influence
of the process parameters. For more complex problems, however,
the general practice is to refer to numerical techniques. Thus Li
et al. [6] analyzed draw-bend tests of sheet metals using finite
element modeling, where some of the results have been compared
with experiments. The error associated with numerical through-
thickness integration was investigated by Wagoner and Li [7]. The
prediction model for springback in a wipe-bending process was
developed by Kazan et al. [8] using artificial neural network
approach together with the finite element method. Panthi et al.
[9] analyzed and examined the effect of load on springback of a
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typical sheet metal bending process using a large deformation
algorithm. Furthermore, Ragai et al. [10] investigated the influence
of sheet anisotropy on the springback of drawn-bend specimens
by means of experiments and finite element analysis. Vladimirov
et al. [11] developed a finite strain model by combining both
nonlinear isotropic and kinematic hardening, where for the
integration of the equations a new algorithm based on an
exponential map was used. An interesting phenomenon, a
decrease of elastic modulus, can be observed in experiments on
(e.g. metal) materials during plastic deformation. Ghaei [12]
presented a numerical procedure which took into account also
this effect. He implemented the elasto-plastic constitutive laws
assuming elastic modulus as a function of effective plastic strain.
The evolution of the elastic modulus with plastic deformation was
also studied in other papers, see e.g. [13–20]. The change of elastic
modulus during unloading is usually described by introducing the
linear chord modulus [14,19,20] in many practical applications.
However, experimental studies have shown that the elastic defor-
mation during unloading is not perfectly linear. In work done by
Sun and Wagoner [18] a new concept of quasi-plastic-elastic (QPE)
strain was introduced within the continuum framework to model
the nonlinear unloading behavior. It was shown that QPE concept
is superior to the linear chord modulus in accurate prediction of
springback in cases when the unloading stops at non-zero stresses.

These studies of elastic–plastic deformations of beams are
mostly limited to symmetric cross-sections. Here, we present the
solution procedure for elastic–plastic bending and springback of
beams with asymmetric cross-sections. Elastic-nonlinear harden-
ing behavior of the material is assumed and both isotropic and
kinematic hardening models are considered. The strains are
described as a function of rotation and shift of the neutral axis
and the curvature of the beam. Exact geometric expressions for
large deflections and large rotations are used during bending
process. Strains, on the other hand, are considered to remain
small. A complete loading history, including the effect of the local
loading during the monotonic decrease of the load, is taken into
account. Numerical examples confirm a strong influence of the
load on the final and springback rotation of the neutral axis, its
shift, and curvature of the beam for different cross-sections and
materials. Generally, forming of beams with asymmetric cross-
sections involves also torsional deformations, which we do not
consider in our computations. Instead we find a special combina-
tion of forming parameters to constrain (to remove the effect of
torsion from) an asymmetric rectangular L-beam to deform in one
plane. Note that the presented solution procedure can easily be
used for more complex shapes of cross-sections. We also present a
custom-made forming tool, designed and manufactured in-house
to experimentally evaluate the proposed solution procedure.
Practically perfect planar shapes of the beams are obtained after
forming, showing an excellent agreement with theoretical predic-
tions, especially when the effect of the pre-strain on elastic
modulus is considered.

2. Formulation of the problem

We consider a beam of asymmetric cross-section subjected
to the bending moment M(t) in direction α, as shown in Fig. 1,
and assume an isotropic, homogeneous material which exhibits
elastic-nonlinear hardening behavior. The yield point is defined
by non-negative parameters σ0 and ε0 (cf. Fig. 3). Suppose that
the beam is stress-free before loading and that the mechanical
response can be described by

σðε; ε0;σ0Þ ¼
f eðεÞ for jεjrε0

f pðε; ε0;σ0Þ for jεj4ε0;

(
ð1Þ

where f eðεÞ and f pðε; ε0;σ0Þ represent stress–strain response in the
elastic and plastic regions, respectively. Both isotropic and kine-
matic hardening models are considered.

Exact geometric expressions for large deflections and large
rotations are taken into account during bending process. Following
the Euler–Bernoulli theory, valid for slender beams, a strain
distribution over the cross-sectional area due to bending can be
described by the following expression:

ε¼ �κz
¼ �κðzC�zsÞ
¼ �κð�ðy�YCÞ sinβþðz�ZCÞ cosβ�zsÞ; ð2Þ

where κ ¼ 1=r is the curvature of the beam (and r is its radius of
curvature), β is the rotation of the neutral axis, zs is the shift of the
neutral axis from the centroid and YC, ZC are the coordinates of the
centerline taken from the reference coordinate system y–z (see
Fig. 1). The neutral axis is found from the no-strain condition,
ε� 0. In the case of a linear elastic beam the neutral axis goes
through the centroid of the cross-section.

Equations of static equilibrium of the beam ∑i F
!

i ¼ 0 and

∑iM
!

i ¼ 0 and static equilibrium of the infinitesimal element yield
dMy=ds¼ 0 and dMz=ds¼ 0 (My, Mz are constants) in the case of
pure bending, where s is a curvilinear coordinate along the length
of the deformed beam (note that curvature κ ¼ dϑðsÞ=ds, where
ϑðsÞ is the angle of inclination of the plane, tangent to the beam's
neutral surface, at the local coordinate s). The stress resultants are

N¼
Z
A
σ dA; My ¼ �

Z
A
σz dA; Mz ¼

Z
A
σy dA; ð3Þ

where N represents inner axial force, My and Mz are inner bending
moments in directions of y-axis and z-axis, respectively, and σ is
the normal stress. Due to the nonlinearity of the problem, the
computation of integrals in Eq. (3) is numerical. The integration
domain (the cross-section) is divided into n rectangular elements.
A generic element Ai, iAf1;2;…;ng (cf. Fig. 1) is defined by four
nodes in which the mechanical properties are known. Since a
complete loading history has to be considered and the effect of the
local loading during the monotonic decrease of the bending
moment occurs (and vice versa in monotonic increase of the load
in non-virgin material), the bending moment MðtÞ : 0-Mmax and
Mmax-0 is applied incrementally, as shown in Fig. 2. Here variable
t represents a pseudo-time, which is used to follow successive
increments of the load (and stress and strain).

The mechanical state corresponding to the current load Mðt0Þ
thus includes a complete loading history. Since the strain in each
node of the cross-section εt0 �Δt

j , jAf1;2;…;nNg (where nN is the

yi,3

AC

y

z

zs

r

y yC
z z C

yC

zC

YC
ZC

M t( )

z
z

neutral
axis

Ai

i,2

i,4
i

i,1

i,3
i,3

i,3

zi,3

Fig. 1. Bending stress and strain state in the cross-section of the beam.
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total number of nodes) is known from the previous load,
Mðt0�ΔtÞ, the change of strain in the current increment can be
calculated from

Δεj ¼ εj�εt0 �Δt
j ; ð4Þ

where strain εj (cf. Eq. (2)),

εj ¼ �κð�ðyj�YCÞ sinβþðzj�ZCÞ cosβ�zsÞ; ð5Þ

is a function of three variables, κ, β and zs. Note that we write εj
instead of εt0j for the strain in the current increment.

Using an algorithm for updating the stress–strain relations,
presented in Section 2.1 and Appendix B, the change of the stress
can be calculated for each node of the cross-section:

Δσj ¼ σup
j ðΔεjÞ; ð6Þ

jAf1;2;…;nNg. Unknown κ, β and zs (Eq. (5)) are computed
numerically from

ΔN¼
Z
A
Δσ dA-0¼ 1

4
∑
n

i ¼ 1
∑
4

k ¼ 1
Δσi;kAi;

ΔMy ¼ �
Z
A
Δσz dA-ΔM0 cosα¼ 1

4
∑
n

i ¼ 1
∑
4

k ¼ 1
Δσi;kzi;kAi;

ΔMz ¼
Z
A
Δσy dA-ΔM0 sinα¼ �1

4
∑
n

i ¼ 1
∑
4

k ¼ 1
Δσi;kyi;kAi: ð7Þ

Quasi-Newton iterative method and trapezoidal integration rule
are used [22].

Finally, the current stress can be calculated as

σj ¼ σt0 �Δt
j þΔσj; ð8Þ

where σt0 �Δt
j represents the stress known from the previous

increment.

2.1. Algorithm for updating stress–strain relations

In this subsection, a computational procedure is presented for
updating the stress–strain relations of the j-th fiber. The isotropic
hardening model is considered. Based on diagrams in Fig. 3,
updated σup

j ðεupj Þ, which are used to find the change of the stress

Δσj between the current and previous load, can be described by
the modified stress–strain relation of the virgin material
σmod
j ðεmod

j Þ shifted by the stress σs
j and strain εsj according to the

σup
j –εupj coordinate system. This can be written as

σup
j ðεupj Þ ¼ σmod

j ðεupj �εsj Þþσs
j ; ð9Þ

σmod
j ðεmod

j Þ ¼ σjðεmod
j ; ε0; upj ;σ0; up

j ; εfpj ;σ
fp
j Þ; ð10Þ

σjðεmod
j ; ε0; upj ;σ0; up

j ; εfpj ;σ
fp
j Þ

¼
f eðεmod

j Þ for jεmod
j jrε0; upj

f pðεmod
j ; ε0; upj ;σ0; up

j ; εfpj ;σ
fp
j Þ for jεmod

j j4ε0; upj ;

8<
: ð11Þ

where an updated yield point is defined by σ0; up
j and ε0; upj . With

the two additional (non-negative) parameters σfp
j and εfpj (due to

the change of the plastic stress–strain response in the complete
loading history), Eq. (11) represents the modified stress–strain
relation of the virgin material (defined by Eq. (1)).

Linear function f e, from Eq. (11), describes the stress–strain
relation in elastic region (jεmod

j jrε0; upj ),

f eðεmod
j Þ ¼ signðεmod

j Þjεmod
j jE; ð12Þ

where E represents the modulus of elasticity. The plastic response
is described by f p, valid in jεmod

j j4ε0; upj . For the purposes of our
study we choose the modified Ludwick law with three material
parameters EL, kL and εL (see [21,23,24] for details):

f pðεmod
j ; ε0; upj ;σ0; up

j ; εfpj ;σ
fp
j Þ ¼ sign εmod

j

� �

� σ0; up
j �σfp

j þEL jεmod
j jþεL� ε0; upj �εfpj

� �h i1=kL �ε1=kLL

� �� �
:

ð13Þ

Here, we describe the procedure for updating the stress–strain
relations of the j-th fiber in each increment of the load. Isotropic
hardening is considered. Graphical description is given in Fig. 3 for
the first two increments of the load, where the total strain is the
sum of the elastic and plastic part of the strain:

εj ¼ εej þεpj : ð14Þ

Pseudo-code:.

1. Start with stored known variables for the previous load, i.e. at
time t0�Δt: σj, εj, σ0; up

j , ε0; upj , σfp
j , ε

fp
j , σ

s
j , ε

s
j and εpj

2. An increment of the load causes change of the strain: Δεj
3. Calculate change of the stress state: Δσj ¼ σup

j ðΔεjÞ
4. Calculate current stress and strain state: σj ¼ σjþΔσj;

εj ¼ εjþΔεj
5. Set: σ0

j ¼ σ0; up
j ; ε0j ¼ ε0; upj

6. Check for the yield condition:
� If jσjj�σ0

j o0;Then Goto step 7
� Else Goto step 8

7. Elastic stress state
� Calculate shift of the modified stress–strain relation:
σs
j ¼ �σj; εsj ¼ �ðΔεj�εsj Þ

� Exit
8. Elastic–plastic stress state

� Update yield point: σ0; up
j ¼ jσjj; ε0; upj ¼ σ0; up

j =E
� Calculate change of the plastic strain: Δεpj ¼ jΔεjj�jΔσj=Ej
� Calculate the total plastic strain: εpj ¼ εpj þsignðΔεjÞΔεpj
� Calculate change of the plastic response for a given incre-

ment of the load: Δσfp
j ¼ σ0; up

j �σ0
j ; Δε

fp
j ¼Δεpj þΔσfp

j =E
� Calculate change of the plastic response over the complete

loading history: σfp
j ¼ σfp

j þΔσfp
j ; ε

fp
j ¼ εfpj þΔεfpj

� Calculate shift of the modified stress–strain relation:
σs
j ¼ �signðσjÞσ0; up

j ; εsj ¼ �signðσjÞε0; upj
� Exit

3. Numerical examples

Based on the above procedure we present the results of
numerical analysis of three examples, equal leg L-beam, T-beam
and rectangular L-beam. Equilibrium (7) is satisfied within a
tolerance 10�10.

M t( )

t

Mmax

t

0

0 t0t0 t

M t( )

M t t( )

0

0

unloadingloading

M

Fig. 2. Loading regime M(t) and an increment of the load ΔM0.
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3.1. Equal leg L-beam

The elastic–perfectly plastic equal leg L-beam is subjected to
the bending moment M(t), which acts in the direction α¼ 1801 as
shown in Fig. 4. Plastic stress–strain response is described by
f pðε; ε0;σ0Þ ¼ signðεÞσ0. For the relative thickness b=a¼ 0:1 the
same problem can be found in Ref. [4]. Dimensionless parameter
m¼MðtÞ=Me is introduced, where Me represents the maximum
elastic bending moment. Fig. 5 shows rotation of the neutral axis
β, its shift zs and curvature of the beam κ with respect to the
parameter m for different maximum bending moments described
by mmax ¼Mmax=Me, see Fig. 2. The complete loading–unloading
process is considered and the relative thickness is fixed at
b=a¼ 0:1. Relatively large differences in rotations β and shifts zs
of the neutral axis during the unloading process (when the cross-
section of the beam has just been plasticized) can be observed.

The effect of mmax on the final rotation βfin and shift zfins of the
neutral axis and the final curvature κfin of the beam for different
values of the relative thickness b=a is presented in Fig. 6. The same

effect on springback rotations βs ¼ βfin�βðmmaxÞ, shifts
zss ¼ zfins �zsðmmaxÞ and curvatures κs ¼ κfin�κðmmaxÞ is depicted
in Fig. 7.

In the case of mmaxr1 (elastic region) the final shifts of the
neutral axis and the final curvatures of the beam remain constant,
i.e. zfins =a¼ 0:0 and κfin=κe ¼ 0:0, respectively, whereas the final
rotations of the neutral axis also remain constant, but differ
due to the relative thickness b=a, i.e. βfin6�30:6281, �30:1751,

�29:4491 and �27:3971 for b=a¼ 0:1, 0.15, 0.2 and 0.3, respec-
tively. Here, κe represents curvature of the beam subjected to the
maximum elastic bending moment Me.

In comparison to the results reported in [4], our calculations
yield slightly different results (for the final rotation compare
Fig. 6 from [4] with Fig. 6 here). We attribute the differences to
the solution procedure used by [4], which included a simplified
expression for rotations during the unloading process. For the case
of the relative thickness b=a¼ 0:2 and maximum bending moment
mmax ¼ 1:9 the stress states for the fully loaded and unloaded case
are plotted in Fig. 8. The cross-sectional model included n¼7600,
11,100, 14,400 and 20,400 square elements for b=a¼ 0:1, 0.15,
0.2 and 0.3, respectively.

Since the stress–strain relations during the unloading differs
from that in the loading process, the contours (representing the
stress distribution over the cross-section) are no longer parallel to
the neutral axis after unloading, see Fig. 8. It can be mentioned
that rotating and shifting of the neutral axis during the unloading
process causes the local loading of some fibers, especially those,
which are close to the neutral axis.

3.2. T-beam

A T-beam is subjected to the bending moment M(t), which acts
in the direction α¼ �451, as shown in Fig. 9. The material which
constitutes the beam is obeying the elastic-linear hardening
rheological model, as graphically described in Fig. 9. An isotropic
type of strain-hardening model is considered.

The stress–strain relations of the given material can be math-
ematically described by the following expression:

σðε; ε0;σ0Þ ¼ signðεÞjεjE for jεjrε0

signðεÞðσ0þEtðjεj�ε0ÞÞ for jεj4ε0;

(
ð15Þ

where Et denotes tangent modulus in the plastic region. The same
as in previous numerical example, dimensionless parameter
m¼MðtÞ=Me and curvature of the beam κe at maximum value of
the elastic bending moment Me are employed. The relative
thickness is fixed at b=a¼ 2=15.

Fig. 10 shows the relationships between the maximum bending
moment and the final rotations βfin, shifts zfins and curvatures κfin

for different values of the material parameter μ¼ E=Et. For
different values of μ the influence of mmax on springback rotations
βs, shifts zss and curvatures κs are presented in Fig. 11. In Fig. 12 the
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effect of μ on rotations β and shifts zs of the neutral axis and
curvatures κ of the beam for the complete bending–unbending
process, when the beam is subjected to the maximum bending
moment mmax ¼ 1:9, is shown. The cross-sectional model included
n¼22,400 square elements.

In the linear elastic case (μ¼ 1:0) rotation and shift remain
constant during the loading–unloading process, i.e. β6�63:7781
and zs=a¼ 0:0, respectively, whereas curvature of the beam is
proportional to the parameter m, i.e. κ=κe ¼m. The stress states for
the fully loaded and unloaded case, with the material parameter
μ¼ 0:01 and maximum bending moment mmax ¼ 2:0, are plotted
in Fig. 13.

Similar to the first numerical example, the contours, which
represent the stresses distribution over the cross-section, are no
more parallel to the neutral axis after unloading, see Fig. 13.

3.3. Rectangular L-beam

Consider a forming application (loadingþunloading) where
rectangular L-beam, 10�15�1.5 mm in cross-section, is subjected
to the bending moment M(t), as shown in Fig. 14. The tool
comprises a fixed circular plate of radius R with a groove at angle
φ and a handle with a small wheel, which fits perfectly to the
groove. As the beam is mounted to the tool at one end, the turn of
the handle deforms it according to the radius of the plate. After
un-mounting and springback of the beam, the final shape with
radius of curvature 4R is obtained. We would like to find an angle
φ at which a perfectly planar final shape of the beam is obtained.

The idea for solution arises from the observation of βðmÞ curves
(e.g. the left diagram in Fig. 5). We can assume for beams of
asymmetric cross-section that during the elastic–plastic bending

a
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Fig. 9. T-beam (left) and the stress–strain relations of material obeying the elastic-linear hardening rheological model (right).
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process there always exists a non-zero rotation of the neutral axis β,
irrespective of the (constant) direction α of the bending momentM(t).
The forming tool (with arbitrary φ) constrains the deformation of the
beam into a plane. But according to the previous assumption, the
constrained beam is also deformed in torsion. To obtain a perfectly
planar shape of the beam after un-mounting, the torsional deforma-
tion would have to vanish. Let us assume further that the vanishing of
the torsional deformation occurs when the mean value of rotation of
the neutral axis at the beginning β0 and that at the end of the loading
process βmax is equal to the direction α (the direction of the bending
moment, cf. Figs. 14 and 15):

α¼ β0þβmax

2
: ð16Þ

Here the rotation of the neutral axis βmax is the rotation β at the
maximum bending moment Mmax, which is determined from the
predefined radius of the circular plate R, rotation βðMmaxÞ, shift of
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the neutral axis zsðMmaxÞ and curvature of the beam κðMmaxÞ,
Fig. 16. According to Mmax, the following expression has to be
satisfied:

R¼ rP ¼ r�zP ¼ r�ðzPC�zsÞ: ð17Þ

Angle φ can be found in four steps:

1. Assume the direction α of the bending moment (see Fig. 14).
2. Determine the maximum bending moment Mmax to satisfy the

condition (17).

3. Check the condition for vanishing of the torsional deforma-
tions, Eq. (16). If the condition is satisfied, search for α is
finished, otherwise go to step 1.

4. Calculate φ from �αþφ¼ 901 (see Figs. 14 and 16).

If we consider material parameters of aluminum alloy 6060 T6
(material properties are listed in Appendix A), the following
results are obtained: α¼ �70:624441, φ¼ 19:375561, Mmax ¼
12;159:14021 N mm, β0 ¼ �67:206651, βmax ¼ �74:042241,
zsðMmaxÞ ¼ �0:38904 mm, κðMmaxÞ ¼ �9:66542� 10�3 mm�1-

rðMmaxÞ ¼ �103:46160 mm, rPðMmaxÞ ¼ �100:0 mm, zfins ¼
�0:43965 mm, κfin ¼ �8:57985� 10�3 mm�1-rfin ¼
�116:55215 mm, rP;fin ¼ �113:20583mm. Note that the cross-
section is modeled by n¼14,100 square elements of dimensions
0.05�0.05 mm. Radius of the plate is R¼ 100:0 mm, which means
that according to the presented formulation the radius of curva-
ture of the circular plate is �100.0 mm. Note that maximum strain
did not exceed ε¼ 0:06346 (fiber N, Fig. 16).

Fig. 17 shows rotations β and shifts zs of the neutral axis
and curvatures κ of the beam for the complete loading–unloading
process. The stress and strain states for the fully loaded case are
plotted in Fig. 18, whereas the stress state after unloading is shown
in Fig. 19. Contrary to the stress distribution, the contours
representing the strain distribution over the cross-section are
always parallel to the neutral axis, Eq. (2).

In the case of kinematic hardening model, which is presented
in Appendix B, the final radius of curvature of fiber P is rP;fin ¼
�113:22151mm. Obviously strain path reversal can be found in
some fibers. The relative difference between results obtained by
both hardening models is only �0.01385%.
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section (e.g. fiber P) to take a predefined radius of curvature R.
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4. Experiment

A custom-made forming tool was designed and manufactured
in-house to experimentally evaluate the proposed solution proce-
dure and results obtained in numerical example 3.3. The sche-
matics and its practical realization are shown in Figs. 14 and 20.

Note that, in general, this forming tool does not enable only
pure bending conditions. But, for this particular purpose (for a
carefully prescribed φ), it enables the same final deformations of
the beam as obtained from pure bending – the result is a circular
arch. The circular plate of radius R¼ 100 mm with a groove at
angle φ¼ 19:381 was used.

We performed experiments on 10 specimens, rectangular
L-beams (10�15�1.5 mm in cross-section and L¼ 500 mm in
length) made of aluminum alloy 6060 T6. After the forming

process, the beams take a shape of a circular arch (essentially flat)
as shown in Fig. 21. Just for illustration, a photo is shown in
Fig. 22 of spatial deformation of the beam caused by additional
torsion which originated from the incorrect angle of the groove
φ¼ 23:551.

For each formed beam the final radius of curvature of fiber P
was measured (see Fig. 16). The relative differences ϵr between
theoretically (rP;fin ¼ �113:20583 mm) and experimentally deter-
mined final radii of curvature of fiber P can be found in Table 1,
where the average relative difference is �2.21770.699%
(the uncertainty is the s.d. of the mean).

4.1. The effect of pre-strain on elastic modulus

In the present formulation and numerical examples it is
assumed that the elastic modulus remains constant during the
loading–unloading process. From additional experimental tests on
cyclic loading of our aluminum specimens we observe an effect of
pre-strain on elastic modulus (see Figs. 23, 24 and Table 2).

The evolution of the elastic modulus can be described with a
scalar function of change of the plastic strain response over the
complete loading history εfp using a saturated type function which
has been widely used for metallic materials [12,14,19,20]. Follow-
ing the formalism from the literature, we model the elastic
modulus as

EðεfpÞ ¼ E0�ðE0�EsatÞð1�eð�ξεfpÞÞ; ð18Þ
where Esat and ξ are two material parameters, Esat is the saturated
elastic modulus and E0 is the initial elastic modulus. The initial
value of elastic modulus of aluminum alloy 6060 T6 is E0 ¼
67322:455 MPa. By fitting the measured elastic modulus during
the unloading and using Eq. (18), we found Esat ¼ 49;807:318 MPa
and ξ¼ 34:374. In Fig. 24, we show values of the elastic modulus
(during unloading) from measurements and diagram of a fitting
function at different pre-strains. It can be seen that the elastic
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Fig. 20. Custom-made forming tool.

Fig. 21. Plane deformation state of the formed beam (for angle φ¼ 19:381).

Fig. 22. Spatial deformation state of the formed beam (for angle φ¼ 23:551).

Table 1
The comparison between theoretically and experimen-
tally determined final radii of curvature of fiber P.

# rP;finexp ð mmÞ ϵr ð%Þ

1 �116.105 �2.561
2 �114.982 �1.569
3 �114.464 �1.111
4 �115.980 �2.451
5 �115.427 �1.962
6 �114.934 �1.527
7 �117.146 �3.481
8 �115.319 �1.867
9 �116.167 �2.616
10 �116.630 �3.025
Aver. �115.715 �2.217

M. Sitar et al. / International Journal of Mechanical Sciences 90 (2015) 77–88 85



modulus rapidly decreases and saturates to Esat as the pre-strain
increases.

This effect can easily be implemented in algorithm for updating
stress–strain relations presented in Section 2.1, where the stress–
strain relation in the elastic region f e, Eq. (12), is now written as

f eðεmod
j Þ ¼ signðεmod

j Þjεmod
j jEj; ð19Þ

for jAf1;2;…;nNg, and some changes in steps 7 and 8 of the
pseudo-code are implemented, i.e.

7. Elastic stress state
� Calculate shift of the modified stress–strain relation:
σs
j ¼ �σj; εsj ¼ �ðΔεj�εsj Þ

� Calculate the total plastic strain: εpj ¼ εpj þsignðΔεjÞ
ðjΔεjj�jΔσj=Eð0ÞjÞ

� Exit
8. Elastic–plastic stress state

� Update yield stress: σ0; up
j ¼ jσjj

� Calculate change of the plastic strain: Δεpj ¼ jΔεjj�
jΔσj=Eð0Þj

� Calculate the total plastic strain: εpj ¼ εpj þsignðΔεjÞΔεpj

� Calculate change of the plastic response for a given incre-
ment of the load: Δσfp

j ¼ σ0; up
j �σ0

j ; Δεfpj ¼ jΔεjj�
jΔσj=EjjþΔσfp

j =Ej
� Calculate change of the plastic response over the complete
loading history: σfp

j ¼ σfp
j þΔσfp

j ; ε
fp
j ¼ εfpj þΔεfpj

� Update elastic modulus: Ej ¼ Eðεfpj Þ
� Update yield strain: ε0; upj ¼ σ0; up

j =Ej
� Calculate shift of the modified stress–strain relation:
σs
j ¼ �signðσjÞσ0; up

j ; εsj ¼ �signðσjÞε0; upj
� Exit

Finally, if the effect of pre-strain on elastic modulus is taken
into consideration and if the beam is curved along the circular
plate of radius R¼ 100:0 mm as in numerical example 3.3, the
following results are obtained: zfins ¼ �0:44116 mm, κfin ¼
�8:38478� 10�3 mm�1-rfin ¼ �119:26376 mm,
rP;fin ¼ �115:92016 mm. The stress state after the unloading pro-
cess is plotted in Fig. 25. In comparison to the results of the final
radii of curvature of fiber P determined by experiments, Table 1,
the average relative difference ϵr ¼ 0:17770:683% is obtained.

As expected, the stresses in Fig. 25 are lower in comparison
to the stresses in Fig. 19, where the effect of pre-strain on
elastic modulus is not considered. By decreasing of the elastic
modulus the formed beam exhibits more springback, i.e. rP;s ¼
rP;fin�rPðMmaxÞ ¼ �15:92016 mm (in the case of E¼ const:, rP;s ¼
�13:20583 mm).

5. Conclusion

We analyzed the problem of elastic–plastic bending and
springback of beams of asymmetric cross-section. We introduced
a procedure for numerical computation of stress and strain states
of this geometric and material nonlinear problem. A complete
loading history was taken into account including the effect of
the local loading during the monotonic decrease of the load.
The strains are described as a function of rotation and shift of
the neutral axis and the curvature of the beam. The presented
algorithm involves a scheme for updating stress–strain relations of
each fiber of the cross-section, and is used to calculate the change
of the stress for each increment of the load. Numerical examples
confirm a strong influence of maximum bending moment on
the final and springback rotation of the neutral axis, its shift,
and curvature of the beam for different cross-sections and materi-
als. Both isotropic and kinematic strain-hardening models are
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Fig. 23. Experimental stress–strain curves of cyclic loading of the specimens made
of aluminum alloy 6060 T6 for five different pre-strains.
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Table 2
The effect of pre-strain on elastic modulus. The linear chord modulus model was
adopted.

# ε ð%Þ E ðMPaÞ

1 ε0 ¼ 0:2766 67,322.455
2 1.0 62,343.272
3 2.0 59,158.412
4 4.0 55,556.024
5 6.0 52,865.855
6 8.0 50,219.493
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considered. It was shown that for the chosen example the relative
difference between results obtained by both hardening models
is practically negligible, but not zero (the results lie within
0.01385%). Note that our solution procedure can be used for
arbitrary loading regime (such as multi-cycle and non-monotonic
loading) and also more complex materials (composite, functionally
graded, etc.).

A custom-made forming tool was designed and manufactured
in-house to experimentally evaluate the proposed solution proce-
dure. A rectangular L-beam made of an aluminum alloy 6060 T6
was used and its material properties were carefully measured.
The first task in this example was to determine an appropriate
angle φ of the groove on circular plate at which a perfectly planar
final shape of the beam would be obtained after forming
(to remove the effect of torsion). It was shown that relative
difference between theoretically predicted and experimental mea-
surements of the final radius of curvature of the formed beam was

within �2,21770,699%, if the elastic modulus was considered to
remain constant during the deformation. Including an additional
feature, the effect of pre-strain on elastic modulus (evolution of
the elastic modulus), in our algorithm, enabled a better description
of a real material behavior. We obtained an excellent agreement
with experiments. The results differed from experiments by only
ϵr ¼ 0:17770:683% in average.

Appendix A. Measuring mechanical properties of aluminum
alloy 6060 T6

Material properties were measured on a Zwick Z050 measuring
device, equipped with Multisens extensometers. The measured
stress–strain curves of nine flat specimens (cut from the 10�15�
1.5 mm L-beams) are illustrated in Fig. 26. Nine tests (one had to
be discarded due to the technical difficulties) were performed at
the same experimental conditions (cross-head speed¼10 mm/
min, cross-head travel resolution¼40:0 μm and temperature¼
20 1C) and then piecewise approximated by seven linear functions,
as shown in Fig. 26 and given Table 3.

Note that Et is approximated to be constant after 0.08 of strain,
i.e. Et ¼ 24:636 MPa for ε40:08.

Appendix B. Algorithm for updating stress–strain relations
when the kinematic hardening model is taken into
consideration

A computational procedure for updating stress strain relations
σup
j ðεupj Þ of j-th fiber of the cross-section prepared for the next

increment of the load, when the kinematic hardening model is
taken into consideration, can be expressed in the way very similar
to the isotropic hardening model, see Fig. 27. Updated stress–
strain relation σup

j ðεupj Þ can be described by Eqs. (9), (10) and (11)
and (11), where the yield point, expressed by σj0 and εj0, is constant
for the complete loading–unloading process.

Additional parameter σsyl
j is involved and represents a shift of

the upper and lower yield limits according to σj-εj coordinate
system. Here, we describe the procedure for updating the stress–
strain relations of j-th fiber in each increment of the load.
Graphical description is given in Fig. 27 for the first increment of
the load.

Pseudo-code.

1. Start with stored known variables for the previous load, i.e.
at time t0�Δt: σj, εj, σfp

j , ε
fp
j , σ

s
j , ε

s
j , ε

p
j and σsyl

j
2. An increment of the load causes change of the strain: Δεj
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Fig. 26. Experimental and approximated stress–strain curves of aluminum alloy
6060 T6.

Table 3
Approximated stress–strain curve of aluminum alloy 6060 T6.

# σ ðMPaÞ ε ð Þ Et ðMPaÞ

1 0.000 0.000
2 σ0 ¼ 186:187 ε0 ¼ 2:766� 10�3 E¼67,322.455

3 199.881 0.025 615.910
4 204.809 0.035 492.728
5 208.319 0.045 351.069
6 210.475 0.055 215.568
7 211.584 0.065 110.864
8 211.953 0.080 24.636

0

0

yield limit

p

up. yield limit

j

j
0
j

j

fp
j

j

0
j

0
j

j

fp
j

0
j

0
j

j

j

1

pf (   ;     ,      )0
j

0
j

ef (   )j

j

mod
jpf (       ;    ,     ,     ,       )0

j
0
j

fp
j

fp
j

ef (       )mod
j

syl
j

mod

mod

updated yield limit

j

j

0
j

s
j

s
j

up
j

up
j

2

ef (       )mod
j

mod
jpf (       ;    ,     ,     ,       )0

j
0
j

fp
j

fp
j

0
j

0
j

0
j

Fig. 27. Evolution of the updated stress–strain relation σupj ðεupj Þ of the j-th fiber, jAf1;2;…;nNg. Kinematic hardening is considered.

M. Sitar et al. / International Journal of Mechanical Sciences 90 (2015) 77–88 87



3. Calculate change of the stress state: Δσj ¼ σup
j ðΔεjÞ

4. Calculate current stress and strain state: σj ¼ σjþΔσj;
εj ¼ εjþΔεj

5. Check for the yield condition:
� If jσj�σsyl

j j�σ0
j o0; Then Goto step 6

� Else Goto step 7
6. Elastic stress state

� Calculate shift of the modified stress–strain relation:
σs
j ¼ �ðσj�σsyl

j Þ; εsj ¼ �ðΔεj�εsj Þ
� Exit

7. Elastic–plastic stress state
� Calculate change of the plastic strain: Δεpj ¼ jΔεjj�jΔσj=Ej
� Calculate the total plastic strain: εpj ¼ εpj þsignðΔεjÞΔεpj
� Calculate change of the plastic response for a given incre-
ment of the load:
○ If Δσj ¼ 0; Then Δσfp

j ¼ 0
○ Else Δσfp

j ¼ jΔσjj�σ0
j �signðΔσjÞσs

j

Δεfpj ¼Δεpj þΔσfp
j =E

� Calculate change of the plastic response over the complete
loading history: σfp

j ¼ σfp
j þΔσfp

j ; ε
fp
j ¼ εfpj þΔεfpj

� Calculate shift of the modified stress–strain relation:
σs
j ¼ �signðσj�σsyl

j Þσ0
j ; ε

s
j ¼ �signðσj�σsyl

j Þε0j
� Calculate shift of the yield limits:

○ If Δσj ¼ 0; Then σsyl
j ¼ σsyl

j
○ Else σsyl

j ¼ σj�signðΔσjÞσ0
j

� Exit

If the effect of pre-strain on elastic modulus is taken into
consideration, some changes in steps 6 and 7 of the pseudo-code
are implemented, i.e.

6. Elastic stress state
� Calculate shift of the modified stress–strain relation:
σs
j ¼ �ðσj�σsyl

j Þ; εsj ¼ �ðΔεj�εsj Þ
� Calculate the total plastic strain: εpj ¼ εpj þsignðΔεjÞðjΔεjj�
jΔσj=Eð0ÞjÞ

� Exit
7. Elastic–plastic stress state

� Calculate change of the plastic strain: Δεpj ¼ jΔεjj�
jΔσj=Eð0Þj

� Calculate the total plastic strain: εpj ¼ εpj þsignðΔεjÞΔεpj
� Calculate change of the plastic response for a given incre-
ment of the load:
○ If Δσj ¼ 0; Then Δσfp

j ¼ 0
○ Else Δσfp

j ¼ jΔσjj�σ0
j �signðΔσjÞσs

j

Δεfpj ¼ jΔεjj�jΔσj=EjjþΔσfp
j =Ej

� Calculate change of the plastic response over the complete
loading history: σfp

j ¼ σfp
j þΔσfp

j ; ε
fp
j ¼ εfpj þΔεfpj

� Update elastic modulus: Ej ¼ Eðεfpj Þ
� Update yield strain: ε0j ¼ σ0

j =Ej
� Calculate shift of the modified stress–strain relation:
σs
j ¼ �signðσj�σsyl

j Þσ0
j ; ε

s
j ¼ �signðσj�σsyl

j Þε0j

� Calculate shift of the yield limits:
○ If Δσj ¼ 0; Then σsyl

j ¼ σsyl
j

○ Else σsyl
j ¼ σj�signðΔσjÞσ0

j
� Exit
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