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In elements made of shape memory alloys (SMAs), large stresses are generated if during heating, shape recovery associated with
martensitic transformation, is constrained by an external element. This kind of recovery process is called constrained recovery. In
this article, a simple one-dimensional model for the analysis of constrained recovery in SMA wire is presented. The model is based
on the theory of generalized plasticity, which was developed by Lubliner and Auricchio. Despite the fact that the model considers an
assumption of a non-constant Young’s modulus of SMA wire, it remains simple and is well suited for further practical engineering
applications and calculations. The regularity of the model is verified by comparing it to experimental results published by Kato,
Inagaki, and Sasaki. It is shown that the assumption of non-constant Young’s modulus significantly improves the agreement between
theory and experiments.
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1. Introduction

Shape memory effect is a unique property of some alloys when,
after being deformed at a lower temperature, they recover their
original shape when heated to a higher temperature. The so-
called “memory” is a result of reversible martensitic transfor-
mation, which is a solid-solid, diffusionless transition between
a crystallographically less ordered low temperature product
phase (martensite) and a crystallographically more ordered
high temperature parent phase (austenite). The return to the
original shape at zero stress state starts at the austenite start
temperature AS and completes at the austenite finish temper-
ature AF . Vice versa, if the SMA is cooled from the austenitic
phase at zero stress state, it starts to transform back to marten-
site at a temperature called martensite start temperature MS
and ends at martensite finish temperature MF .

In this way, large strains of even 10% can be recovered dur-
ing heating from martensite to austenite and the process is
often referred to as free recovery. However, if free recovery
is hampered by an external obstacle before temperature AF is
reached, the process is called constrained recovery and large
recovery stresses up to 800 MPa can be generated. Recovery
stresses can diminish if the shape memory alloy (SMA) is then
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cooled and transformation from austenite to martensite oc-
curs. This property makes SMAs ideally suited for use as fas-
teners, seals, connectors, and clamps, not only in industrial ap-
plications [1–3], but also in medicine [3–5]. The same property
is used when SMA elements are embedded into a composite
matrix for shape control of structural elements [6, 7]. Of partic-
ular importance for such applications is an understanding of
the generation of recovery stresses with respect to temperature.
Available publications on the process of constrained recovery
in SMAs are mostly limited to uni-axial examples [8–17], with
rare exceptions where constrained recovery in SMA rings is
dealt with [18, 19]. Because of the complexity of the problem,
some simplifications are often used in mathematical modeling.
One of them is considering the value of Young’s modulus of
SMA for martensite and austenite phase as constant, though
it is well known that this value differs significantly.

The principal aim of the present article is to develop a sim-
ple mathematical model of uni-axial constrained recovery in
an SMA wire element considering different values of Young’s
modulus for the martensite and austenite phase. The model
is based on the theory of generalized plasticity which, despite
its simplicity, predicts the shape-memory effect and superelas-
tic behavior. It was developed by Lubliner and Auricchio [20,
21]. The external obstacle that causes constrained recovery in
the SMA wire is an elastically deformable bias spring made
of conventional material. The data for the NiTi SMA wire
containing 50.0 at.% titanium and for the steel bias spring
were fed into the mathemetical model in order to generate a
thermomechanical response. The results of the modeling were
compared with experimental tests published by Kato et al.
[15]. The comparison of the theory and experiments show
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that assuming a non-constant Young’s modulus of martensite
and austenite essentially improves the theory.

This article outlines first some general aspects of the process
of constrained recovery in SMAs, then the model is presented
in detail, and finally several numerical examples and a com-
parison between theory and experiments are examined.

2. Process of Uni-Axial Constrained Recovery

Large stresses are generated in an element made of SMA, if the
recovery to austenite structure during heating is constrained
by an external element. In this article, the shape memory ele-
ment is represented by an SMA wire and the external element
by a linear bias spring made of conventional material.

The SMA wire is cooled from the austenite state, T > AF ,
to the martensite state, T = T0 < MF . It is assumed that the
total strain of the SMA wire is zero at temperature T0, εS = 0,
and the length is L0. The SMA wire is then loaded by a tensile
force and unloaded at constant temperature T = T0 < MF so
that the total strain after unloading is εS = εS0 and the length
is LS0. The recoverable shape memory strain εS0 will be called
prestrain and can disappear completely when the SMA wire
is heated above temperature AF . The process is called free re-
covery. If recovery is hampered by an external obstacle, the
process is called constrained recovery and prestrain εS0 disap-
pears only when temperature A�

F > AF is reached. The system
SMA wire–external obstacle can then be further heated or
cooled. If it is cooled to the temperature T < M�

S , transforma-
tion from austenite to martensite can occur again and recovery
stresses diminish. The temperatures A�

F and M�
S can be called,

respectively, austenite finish and martensite start temperature
under stress �. The process of constrained recovery is schemat-
ically shown in Figure 1, where a linear bias spring made
of a conventional material (e.g., steel) presents an external
obstacle.

In Figure 1, Lk0 is spring length at temperature T0, Lk is
length of the spring at temperature T, LS is length of the SMA
wire at temperature T, and TC is contact temperature at which
the SMA wire and the spring make contact.

The complete process of constrained recovery can be di-
vided into five temperature ranges, as proposed by Stalmans
et al. [12]: (a) After the loading-unloading cycle and during
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Fig. 1. Process of uni-axial constrained recovery.

heating the SMA wire has martensite structure between the
temperatures T0 and AS. Both elements (the SMA wire and the
bias spring) are extending due to heating. (b) At temperature
AS, the retransformation in the SMA wire starts so that the
wire contracts during heating while the bias spring extends. At
temperature TC both elements touch each other and the pro-
cess of constrained recovery begins. (c) Above temperature TC,
retransformation to austenite in the SMA wire is constrained
because of the bias spring and continues until temperature
A�

F is reached. Since stresses in the SMA wire increase, the
temperature A�

F at which the retransformation to austenite is
completed is higher than AF . (d) If the system is heated above
temperature A�

F , the SMA wire is in the austenite region and
behaves as conventional material; like a bias spring it extends
with increasing temperature. If the system is cooled, there are
two possibilities. If temperature is above M�

S , then SMA wire
behaves as conventional material. (e) But if during cooling, the
temperature is below M�

S , then transformation from austenite
to martensite takes place, the SMA wire extends, and recov-
ery stresses diminish. At some temperature Tloose, there is no
contact between both elements anymore and recovery stresses
drop to zero.

The expression for the total strain of the SMA wire εS can
be written in two different ways:

εS = LS − L0

L0
, (1)

εS = εSR + εTH + εEL = εSR + �S(T − T0) + �

E
, (2)

where εSR is the recoverable shape memory strain, εTH is ther-
mal strain, εEL is elastic strain, �S is linear thermal dilatation
coefficient, � is stress, and E is Young’s modulus of the SMA
wire. In the literature [20], the recoverable strain εSR is usually
taken as proportional to the mass fraction of martensite � :

εSR = εS0�, (3)

with � = 0 denoting all austenite and � = 1 all martensite
structure of SMA wire. After the loading-unloading cycle at
temperature T0, the length LS0 can be calculated from Eqs. (1)
and (3): LS0 = L0 (1 + εS0).

Experiments clearly indicate that the Young’s modulus E of
the SMA materials is strongly dependent on the mass fraction
of martensite � . An acceptable assumption for the modulus
function of an SMA material is, as proposed in the literature
[11]:

E = (EM − EA) � + EA, (4)

where EM is the modulus value for the SMA as 100% marten-
site and EA is the modulus value for the SMA as 100% austen-
ite. The ratio of the magnitudes of EA to EM usually has a
value of 2 or even greater.

The expression for the total strain of the spring εk can be
written in a similar way as Eq. (1):

εk = Lk − Lk0

Lk0
. (5)
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3. The Mathematical Model of Constrained Recovery

It is assumed that the SMA wire is first cooled from the austen-
ite to martensite state then loaded by tensile force and un-
loaded at constant temperature T0. The result of the loading-
unloading cycle is the prestrain εS 0, which can be recovered by
heating. Five temperature regions can be distinguished during
heating, starting from T0.

3.1. First Temperature Range, T0 ≤ T ≤ AS

Both elements are extending during heating and the recovery
in the SMA wire from martensite to austenite has not started
yet. The total strain of the SMA wire εS can be written from
Eq. (2) in the following way:

εS = εS0 + �S(T − T0). (6)

In a similar way, the total strain of the bias spring εk can be
written as:

εk = �(T − T0), (7)

where � is linear thermal expansion coefficient of the bias
spring. The stress state in both elements is zero, since the
SMA wire and bias spring do not touch each other in this
temperature range.

3.2. Second Temperature Range, AS ≤ T ≤ TC

In the SMA wire, a reverse transformation from martensite
to austenite begins at temperature AS. The total strain of the
SMA wire can be written from Eq. (2),

εS = εSR + �S(T − T0). (8)

Equation (8) is very similar to Eq. (6) except that the recov-
erable shape memory strain εSR is no longer constant but
diminishes with increasing temperature T. Another equation
(the flow rule), which would relate martensite mass fraction
� (or recoverable shape memory strain εSR), to temperature
T and stress � in the SMA wire is needed. It can be deduced
from the theory of generalized plasticity, which was developed
by Lubliner and Auricchio [20, 21]. Different flow rules can be
assumed. In our case, the linear flow rule for retransformation
from martensite to austenite will be used:

� = C [T − AF + � (AF − AS)] , (9)

where C is one of the fundamental descriptors of SMA and
is called a stress rate. Since the stress in the SMA wire is still
zero, � = 0, and using Eq. (3) it can be written from Eq. (9):

εSR = εS0
AF − T
AF − AS

. (10)

Recoverable shape memory contact strain of the SMA
wire εC at contact temperature TC can be calculated from

the condition that the lengths of both elements are equal,
LS(TC) = Lk(TC) = LC:

LS(TC) = L0 [1 + εC + �S(TC − T0)]
= Lk0 [1 + � (TC − T0)] = Lk (TC) = LC. (11)

Contact mass fraction of martensite �C can be easily calcu-
lated from Eq. (3): �C = εC/εS0. The contact temperature TC
can be calculated from Eq. (10):

TC = AF − εC

εS0
(AF − AS) . (12)

If εC = 0 (�C = 0), then contact temperature is TC = AF and
there is no constrained recovery. On the other hand, if εC = εS0
(�C = 1), the contact temperature is TC = AS, which means
that the process of constrained recovery begins at the same
time as the retransformation from martensite to austenite and
stresses in both elements are maximal.

3.3. Third Temperature Range, TC ≤ T ≤ A�
F

From temperature TC onward the SMA wire and the bias
spring are in contact and in both elements stresses are increas-
ing with increasing temperature T (recoverable shape memory
strain εSR is decreasing and the bias spring resists contraction).
The SMA wire–bias spring system shown in Figure 2 has to
be in static equilibrium: FS = Fk.

The force in the bias spring Fk can be written:

Fk = k [LC (1 + � (T − TC)) − Lk] , (13)

where k is the bias spring constant. By considering the equi-
librium equation, Eqs. (1) and (13), and equal lengths of the
SMA wire and the bias spring, the total strain of the SMA
wire εS can be written in the following form:

εS = C1 + C2T − C3�, (14)

where C1, C2, and C3 are the constants:

C1 = (LC(1 − �TC) − L0) /L0,

C2 = �TC/L0,

C3 = Q/ (kL0) ,

(15)

where Q is the SMA wire’s cross section. The total strain of
the SMA wire εS can also be written in another form from

F

F

Fig. 2. Forces in the SMA wire and bias spring.
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Eq. (2):

εS = εS0� + �S (T − T0) + �

(EM − EA) � + EA
, (16)

where Eqs. (3) and (4) were used. In Eqs. (14) and (16), the flow
rule (9) can be used and then both expressions can be equal-
ized. After some rearrangements, a simple quadratic function
can be written:

a1�2 − a2(T)� − a3(T) = 0, (17)

where a1, a2(T), and a3(T) are:

a1 = (EA − EM) [εS0 + C3C (AF − AS)] ,
a2 (T) = EA [εS0 + C3C (AF − AS)] + (EA − EM)

× [C1 + C2T − C3C (T − AF ) − �S (T − T0)]
+ C (AF − AS) ,

a3 (T) = EA [�S (T − T0) − C1 − C2T + C3C (T − AF )]
+ C (T − AF ) . (18)

The solution for Eq. (17) yields two distinct real roots for � .
However, since �C ≥ � ≥ 0, the only acceptable root is given
by:

� (T) =
a2 (T) −

√
a2

2 (T) + 4a1a3 (T)

2a1
. (19)

When the mass fraction of martensite � is known, stress �
in the SMA wire can be easily calculated from Eq. (9). The
temperature A�

F at which retransformation from martensite
to austenite during constrained recovery is completed can be
calculated from Eq. (17) with the condition �(A�

F ) = 0 ⇒:
a3(A�

F ) = 0

A�
F = C AF + EA (�ST0 + C1 + C3C AF )

C + EA (�S − C2 + C3C)
. (20)

Stress at the temperature A�
F can then be calculated from Eq.

(9):

�
(

A�
F

) = CEA
C1 + C2 AF − �S (AF − T0)
C + EA (�S − C2 + C3C)

. (21)

The length of the SMA wire and the length of the bias spring
are equal at temperature A�

F and can be calculated from Eq.
(14):

LS
(

A�
F

) = L0
(
1 + C1 + C2 A�

F − C3�
(

A�
F

)) = Lk
(

A�
F

)
.(22)

If the bias spring is regarded as an ideally rigid or non-
deformable body, it can be achieved in the model by us-
ing constants � = 0 and k = ∞ (C2 = 0, C3 = 0). In this
case, the length of both elements is constant: L(A�

F ) =
L0[1 + εC + �S(TC − T0)] = Lk0.

3.4. Fourth Temperature Range, A�
F ≤ T or A�

F ≥ T ≥ M�
S

The SMA wire and the bias spring are still in contact, but
the retransformation in the SMA wire has finished and both
elements extend with increasing temperature or contract while
cooling. The total strain of the SMA wire εS can be written
from Eq. (2):

εS = �S(T − T0) + �

EA
. (23)

Since Eq. (14) is still valid, it is possible to equalize
Eqs. (14) and (23), and after some rearrangements, stress �
in the SMA wire can be written as:

� = EA

1 + C3 EA
[C1 + �ST0 + (C2 − �S) T] . (24)

The length of both elements can be calculated from
Eqs. (1) and (23):

LS = Lk = L0

[
1 + �S (T − T0) + �

EA

]
. (25)

If the bias spring is considered as an ideally rigid body, i.e., � =
0 and k = ∞, then the stress and length of the SMA wire in
the fourth temperature range are: � = EA [C1 − �S (T − T0)]
and LS = L0 [1 + εC + �S (TC − T0)] = Lk0.

3.5. Fifth Temperature Range, M�
S ≥ T ≥ Tloose

During cooling a transformation from austenite to martensite
in the SMA wire begins at temperature M�

S . Because of the
transformation the SMA wire extends during cooling while
the bias spring is contracting. Even though stresses in both
elements diminish, they are still in contact so that Eqs. (14),
(15), and (16) are still valid, but the flow rule (9) is not correct in
this temperature range. According to the theory of generalized
plasticity [20, 21], the linear flow rule for a transformation
from austenite to martensite can be used:

� = C [T − MF − (1 − �) (MS − MF )] . (26)

In Eqs. (14) and (16), the flow rule (26) can be used and then
both expressions can be equalized:

εS0� + �S (T − T0) + C [T − MF − (1 − �) (MS − MF )]
(EM − EA) � + EA

= C1 + C2T − C3C [T − MF − (1 − �) (MS − MF )] .
(27)

There are two unknowns in Eq. (27): temperature T and
martensite mass fraction � . Temperature M�

S can be calcu-
lated from Eq. (27) using the condition � = 0:

M�
S = CMS + EA (�ST0 + C1 + C3CMS)

C + EA (�S − C2 + C3C)
. (28)
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Table 1. Material Properties

MS = 55 ◦C MF = 17 ◦C AS = 25 ◦C AF = 61 ◦C
T0 = 15 ◦C L0 = 35 mm C = 5.7 MPaK−1 �S = 1.1 · 10−5 K−1

EM = 30 GPa EA = 70 GPa E = 40 GPa = const. � = 2 · 10−5 K−1

Stress �(M�
S ) at which a transformation from austenite to

martensite begins can be calculated by substituting Eq. (28)
into Eq. (26):

�
(
M�

S

) = CEA
C1 + C2 MS − �S (MS − T0)
C + EA (�S − C2 + C3C)

. (29)

Equations (28) and (29) can be compared to Eqs. (20) and
(21), where similar structure can be observed.

Temperature Tloose and martensite mass fraction �loose at
which stresses drop to zero and there is no contact between
the SMA wire and the bias spring can also be calculated. First,
the relation between Tloose and �loose can be derived from flow
rule (26) using the condition � = 0:

Tloose = MS − �loose (MS − MF ) . (30)

Further, it can be written from Eq. (27):

εS0�loose + �S (Tloose − T0) = C1 + C2Tloose. (31)

Both unknowns can be easily calculated from Eqs. (30) and
(31):

Tloose = εS0 MS − (C1 + �ST0) (MS − MF )
εS0 + (C2 − �S) (MS − MF )

, (32)

�loose = C1 + C2 MS − �S (MS − T0)
εS0 + (C2 − �S) (MS − MF )

. (33)

Equations (32) and (33) indicate that both Tloose and �loose are
independent of the Young’s modulus of the SMA wire and the
spring constant of the bias spring. It should also be noted that
martensite mass fraction �loose is not equal to 1 in general. It
means that transformation from austenite to martensite can
be active also when both elements are no longer in contact, if

the SMA wire is further cooled to a temperature T ≤ Tloose. In
this case, the situation is similar as in the second temperature
range where the transformation from martensite to austenite
instead of the transformation from austenite to martensite is
taking place. Due to the simplicity of the derivation, further
cooling T ≤ Tloose will not be treated here.

When extreme values of the martensite mass fraction in this
temperature range are known, 0 ≤ � ≤ �loose, the temperature
T at an appropriate value of � can easily be calculated from
Eq. (27).

4. Numerical and Experimental Results

Most of the material properties of the SMA wire made of
NiTi alloy containing 50.0 at.% titanium and of the external
obstacle are taken from [15] and are collected in Table 1. A
cold-drawn SMA wire was cut into specimens that were an-
nealed at 400 oC for 60 min. During the annealing, each spec-
imen was put into a ceramic tube to remember the straight
shape. The diameter of the SMA wire was d = 0.7 mm, and
the gauge length was L0 = 35 mm. The average grain size was
50 �m in diameter. Young’s moduli for the martensite and
austenite phase, EM = 30 GPa and EA = 70 GPa, are taken
from the literature [22]. Since the influence of non-constant
and constant value of Young’s modulus of the SMA wire on
numerical results will also be analyzed, the constant value will
be taken as E = 40 GPa = const. The same value was used by
Kato et al. in their work [15]. In all calculations, data from
Table 1 were used.

The influence of different contact strains εC is shown in
Figure 3, while prestrain εS0 = 2.3 % is constant and bias
spring constant is k = 300 N/mm. The difference between
constant and non-constant Young’s modulus of the SMA wire

Fig. 3. The relationships between temperature T and stress � in SMA wire and between temperature and martensite mass fraction �
at different contact strains εC.
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Fig. 4. Hysteresis loop of the system SMA wire–bias spring.

can be clearly seen and is increasing at higher values of contact
strain εC.

For instance, at contact strain εC = 2.3 % and if a non-
constant Young’s modulus is considered, stress �(A�

F ) and
temperature A�

F at which retransformation in SMA wire
ends are �(A�

F ) = 473.7 MPa and A�
F = 144.1 ◦C. But, if a

constant value of Young’s modulus is assumed, stress is
�(A�

F ) = 389.1 MPa and temperature is A�
F = 129.3 ◦C. In

the fourth temperature range, T ≥ A�
F , when retransforma-

tion in SMA wire is complete, stresses are still increasing
(� > �S), but at much lower rates than in the third temperature
range where retransformation from martensite to austenite is
active.

The entire heating–cooling cycle is presented in Figure 4.
Prestrain of the SMA wire is εS0 = 2.3 %, contact strain is
εC = 1.6 %, and bias spring constant is k = 300 N/mm.

Recovery stresses increase rapidly during a transformation
from martensite to austenite in the third temperature range,
the stresses remain almost constant after transformation is
complete in the fourth temperature range, and as the system
is further cooled the stresses decrease rapidly in the region of

austenite to martensite transformation in the fifth tempera-
ture range. A typical SMA hysteresis loop can be observed.
The width of the hysteresis cycle is small since the difference
between transformation temperatures MS and AF is small (see
Table 1). It is interesting to note that temperature Tloose is iden-
tical no matter if constant or non-constant Young’s modulus
of the SMA wire is used.

If the bias spring is considered as an ideally rigid body, then
its linear thermal expansion coefficient is � = 0 and the spring
constant is k = ∞. In this case, numerical results are collected
in Figure 5.

Prestrain of the SMA wire is εS0 = 2.3 % and its con-
tact strain is taken as εC = 0.8 %. The difference between
constant and non-constant Young’s modulus of the SMA
wire is even more evident. For instance, if non-constant
Young’s modulus is considered, stress �(A�

F ) and temper-
ature A�

F are �(A�
F ) = 484.9 MPa and A�

F = 146.1 ◦C. But,
if constant value of Young’s modulus is assumed, stress is
�(A�

F ) = 292.0 MPa and temperature is A�
F = 112.2 ◦C. In the

fourth temperature range, T ≥ A�
F , stresses are decreasing,

which is physically correct since � < �S.

Fig. 5. The relationships between temperature T and stress � in SMA wire and between temperature and martensite mass fraction �
when the bias spring is an ideally rigid body.
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The results from the model are also compared with the
experimental tests performed by Kato et al. [15] and are pre-
sented in Figure 6.

In their tests, SMA wire made of NiTi alloy containing
50.0 at.% titanium was used. The external obstacles were
crossheads of a hard-type testing machine. The SMA wire was
inserted into an Instron hard-type tensile testing machine and
heated at temperature T = 100 ◦C, which is above AF = 61 ◦C.
Since the movement of crossheads was halted during heating,
the external obstacle can be regarded as an ideally rigid body.
The SMA wire wanted to shrink from the length LS0 to L0,
but the crossheads held the constant length LS0 during heat-
ing and high stresses were generated in the SMA wire. Kato
et al. measured the magnitudes of the shape recovery stresses
� at different amounts of prestrain εS0; contact strains εC
were the same as prestrains and at a constant temperature
T = 100 ◦C. The agreement between the experiments and the
theory is much better in the case of a non-constant value of
Young’s modulus when prestrains are εS0 < 1.5 %. The dif-
ference caused by the use of constant or non-constant value
of Young’s modulus almost disappears when prestrains are
εS0 > 3 %. Two different domains can be seen in Figure 6. In
the case of non-constant Young’s modulus, the critical value
of prestrain is εS0 = 0.40 % and in the case of constant value
the crititical value is εS0 = 0.64 %. When prestrain is smaller
than the critical value, the retransformation to austenite in the
SMA wire has completed before temperature T = 100 ◦C has
been reached. This means that the SMA wire is in the fourth
temperature range, � = 0. But if prestrain is higher than the
critical value, the retransformation to austenite has not com-
pleted at temperature T = 100 ◦C yet and there is a mixture of
martensite and austenite, and the SMA wire is in the third tem-
perature range, � > 0. For instance, at prestrain εS0 = 3.2 %,
the calculated value of martensite mass fraction in the case
of non-constant Young’s modulus is � = 0.70 and in the case
of constant Young’s modulus is � = 0.69 and stresses are also
very similar. The reason for such behavior lies in the fact that
at higher prestrains the effect of non-constant value of Young’s
modulus is reduced since the mixture in the SMA wire is 70 %

martensite and only 30 % austenite. At lower values of pre-
strain, the mixture in the SMA wire is mainly austenite and
the effect of non-constant Young’s modulus should not be
neglected.

5. Conclusions

A simple one-dimensional model of constrained recovery as-
suming a non-constant Young’s modulus was developed and
compared with experimental results from the literature [15].
It can be concluded that the assumption of a non-constant
Young’s modulus considerably improves the agreement be-
tween theory and experiments in the case when reverse trans-
formation from martensite to austenite is completed (fourth
temperature range) or when reverse transformation is not com-
pleted yet but the structure is mainly austenitic. The main ad-
vantage of the model is its simplicity in numerical calculations
since the most difficult task is to find two distinct real roots
for martensite mass fraction � in quadratic function (17). It
should also be noted that the proposed model can be used
for analysis of constrained recovery in SMA wire subjected to
compression with only a changing sign of certain constants,
i.e., prestain εS0, contact strain εC, stress rate C, and taking
the plus sign in Eq. (19).
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