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It is illustrated in this paper that a nonlinearly elastic column, depending upon the values of

di®erent material parameters involved, exhibits several stability characteristics and types of

buckling which are generally observed separately in distinctively di®erent structural systems.
By introducing ¯nite disturbances it is shown that the column may buckle well before the

bifurcation buckling load is reached. The proposed approach can be useful in engineering

practice since it can be utilized to study the stability of uniaxial structural elements made from
rubber or any other material which obeys the modi¯ed Ludwick's constitutive model.
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1. Introduction

Buckling or instantaneous collapse of structural systems caused by external and/or

internal loads, not su±cient to cause yield in the material of the structure, has been

treated extensively in the existing literature, especially Euler's elastica. At ¯rst, it

was shown that bifurcation point divides the solution domain into pre- and post-

critical sub-domains; where the ¯rst sub-domain is stable and corresponds to a trivial

solution (initially straight column con¯guration), while the latter is either unstable

(trivial solution) or stable which corresponds to a deformed column. Subsequently it

was shown that the nontrivial branch of solution in the post-critical sub-domain is

not stable entirely. For example, Wang1 analyzed the complete post-buckling sub-

domain of clamped�simply supported elastica and discovered that the bifurcation

*Corresponding author.

International Journal of Structural Stability and Dynamics
Vol. 12, No. 6 (2012) 1250077 (19 pages)

#.c World Scienti¯c Publishing Company

DOI: 10.1142/S0219455412500770

1250077-1

http://dx.doi.org/10.1142/S0219455412500770


curve of the nontrivial post-critical branch is not monotonic. He found a limit point

and thus showed that post-buckling behavior exhibits further nonlinear phenomena

such as snap-through which results in so-called secondary loss of stability. Studies

done by Korobeinikov,2 Kuznetsov and Levyakov,3�6 and similarly Wu7�9 have also

revealed previously unknown bifurcation points and solution branches.

Following these results, in the present paper Euler's elastica is generalized to the

context of nonlinearly elastic material with the main focus on analysis of stability

conditions. The topic of global stability of a special case, a clamp�free supported

column was treated by Wang, cf. Ref. 10, where material nonlinearity was intro-

duced through the relation between inner bending moment and curvature. Similar

problem was addressed by Kang et al.11 They investigated bending and stability of a

clamp�clamp supported column ¯ber. Jung and Kang12 also analyzed de°ections of

a column ¯ber but in their case constitutive equation corresponded to a Ludwick

or modi¯ed Ludwick type. They presented de°ection diagrams for four di®erent

combinations of a horizontal and vertical direction of point and distributed load.

Analysis of global stability and post-buckling behavior of a clamped�free columns

made from Ludwick-type nonlinearly elastic material was studied by Brojan et al.13

Furthermore, approximative formulas for clamp�free, hinge�hinge and clamp�
clamp supported nonlinearly elastic columns in post-buckling domain were devel-

oped by Brojan and Kosel14 to study stability conditions and de°ections.

It will be shown here, that this relatively simple model is interesting for structural

stability studies because, depending upon the values of di®erent material parameters

involved, it exhibits various types of buckling generally observed separately in dis-

tinctively di®erent structural systems, including bifurcation buckling, limit-point

buckling, and ¯nite-disturbance buckling.

2. Problem Statement

Consider a slender, initially straight elastic column of length L and uniform rec-

tangular cross-section of thickness h and width b. The column with various supports

is subjected to an axial force P in compression, Fig. 1. As this force exceeds a certain

value Pcr the column may de°ect laterally, as shown in Figs. 1(b) to 1(e).

By �,

� ¼ L�
Z L

0

cos#ðsÞds; ð1Þ

vertical displacement of the column is denoted.

The material of which the Euler's columns are made is assumed to be incom-

pressible, homogenous, isotropic, and nonlinearly elastic. It follows the modi¯ed

Ludwick's constitutive model, mathematically described by the following expression

�ð"Þ ¼ signð"ÞE½ðj"j þ "0Þ1=k � "
1=k
0 �; ð2Þ

where E, k, and "0 represent material constants, cf. Refs. 12 and 15.

M. Brojan, M. Sitar & F. Kosel

1250077-2



The Cartesian coordinate system is introduced such that the x-axis coincides with

the longitudinal axis of the undeformed column and the coordinate origin is located

at its ¯xed end. Let s, 0 � s � L, be the curvilinear coordinate along the longitudinal

axis of the column measured from the ¯xed end and #ðsÞ the angle of inclination at

local point s, see Fig. 2.

Static equilibrium of the column segment, Fig. 2(a) where H and M0 represent

reactive force and moment acting in the support of the column, and static equili-

brium of an in¯nitesimal element, Fig. 2(b), together with geometrical relations,

x 0ðsÞ ¼ cos#ðsÞ and y 0ðsÞ ¼ sin#ðsÞ; ð3Þ
yields

M 0ðsÞ þ P sin#ðsÞ þH cos#ðsÞ ¼ 0: ð4Þ

(a) (b)

Fig. 2. Deformed con¯guration and in¯nitesimal element of the de°ected column.

Fig. 1. Trivial and post-critical shape modes of the Euler's columns.
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From the expression for the inner bending moment M ¼ �R
A
�ydA, material con-

stitutive model described by Eq. (2), and normal strain-curvature expression " ¼
�y��1 which is a reasonable approximation for su±ciently slender columns, one can

deduce

MðsÞ ¼ 2bkE�ðsÞ2 ð1þ kÞh� 2k"0�ðsÞ
2ð1þ kÞð1þ 2 kÞ�ðsÞ

�h

2�ðsÞ þ "0

� �
1þ1=k

�

� k"
2þ1=k
0

ð1þ kÞð1þ 2kÞ �
h2"

1=k
0

8k�ðsÞ2
#
; ð5Þ

where �ðsÞ represents the radius of the column's curvature at point s, cf. Ref. 15. The

upper symbol in �, � designates the sign in case of positive curvature and vice versa.

Finally, substituting geometrical relation ��1ðsÞ ¼ # 0ðsÞ and Eq. (5) into Eq. (4)

leads to the governing di®erential equation of the problem,

� # 00ðsÞ
ð# 0ðsÞÞ3 �A"

1=k
0 � "0 �

h

2
# 0ðsÞ

� �
1=k

ð�A� B# 0ðsÞ � Cð# 0ðsÞÞ2Þ
� �

þ P sin#ðsÞ þH cos#ðsÞ ¼ 0; ð6Þ

where 0 denotes di®erentiation with respect to variable s and A, B, C are introduced

quantities

A ¼ 4bEk2"20
ð1þ kÞð1þ 2kÞ ; B ¼ Ah

2k"0
; C ¼ bEh2

2ð1þ 2kÞ : ð7Þ

Equation (6) together with the accompanying boundary conditions characterizes the

post-buckling behavior of columns subjected to an axial force. Boundary conditions

and bifurcation loads of the columns investigated in this paper are listed in Table 1.

The values of the bifurcation loads can be obtained via linearization of the problem.

They are the solutions of the well known transcendental equations, cos ! ¼ 0,

sin! ¼ 0, !� tan! ¼ 0 and ! sin!þ 2 cos!� 2 ¼ 0, where ! ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PbifðEmIÞ�1

p
.

Linearization of the modi¯ed Ludwick's stress�strain relationship at small strains,

e.g. yields

Em :¼ d�

d"

����
"¼0

¼ "
1�k
k

0 E

k
: ð8Þ

Table 1. Boundary conditions and bifurcation loads.

Euler case Support Coundary conditions Pbif � L2=ðEmIÞ
I Clamp�free #ð0Þ ¼ 0; # 0ðLÞ ¼ 0 �2=4
II Hinge�hinge # 0ð0Þ ¼ 0; # 0ðLÞ ¼ 0 �2

III Clamp�hinge #ð0Þ ¼ 0; # 0ðLÞ ¼ 0 ¼: 2.0457�2

IV Clamp�clamp #ð0Þ ¼ 0; #ðLÞ ¼ 0 4�2
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Constant Em corresponds to the elastic modulus of a linearly elastic (Hooke's)

material which has approximately the same response as modi¯ed Ludwick's material

at small strains. This approximation may often be useful when e.g. determining

bifurcation buckling force.15

The governing second order nonlinear di®erential equation is solved numerically

using the Runge�Kutta�Fehlberg (RKF) integration method. Boundary value

problem is converted to initial value problem by employing parameter � :¼ # 0ð0Þ
and solved using shooting method. At ¯xed value of the force P, force H is unknown

in the III Euler's case. Therefore additional condition yðLÞ ¼ 0 is taken into

account. Since there are two unknown parameters in the numerical procedure, i.e.

� and H , Newton's method for system of nonlinear equations is applied. Further-

more, the Cartesian coordinates of the points along the natural axis of the column

can be determined from the geometrical relations (3) and boundary conditions

xðs ¼ 0Þ ¼ 0, yðs ¼ 0Þ ¼ 0.

3. Examples and Discussion

Based on the mathematical model presented above, a complete stability analysis of

all four Euler's cases for three types of material, i.e. linearly elastic, softening-elastic,

and hardening-elastic material, is shown in this section. Geometrical properties of the

column are length L ¼ 500:0mm, width b ¼ 50:0mm and thickness h ¼ 15:0mm.

Particular values of material parameters used in numerical calculations can be found

in Fig. 3.

Static stability analysis of structures is crucial when multiple equilibrium states

(which are not necessarily in¯nitesimally close) exist at a certain value of the load,

i.e. when equilibrium can be achieved with two or more di®erent deformation

Fig. 3. Stress�strain relations and material parameters.
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con¯gurations at the same level of the load. We will denote a system in (quasi) static

equilibrium as in (i) neutral, (ii) unstable, (iii) (locally) stable or (iv) globally stable

state:

(1) if there exists exactly one equilibrium con¯guration;

(2) if even in¯nitesimal disturbance is su±cient for a system to pass to a di®erent

equilibrium con¯guration;

(3) if only ¯nite disturbance is su±cient for a system to pass to a di®erent equili-

brium con¯guration;

(4) if even ¯nite disturbance cannot incite a system to pass to a di®erent equilibrium

con¯guration,

respectively. By disturbance we mean arbitrary transient load or displacement. A

disturbance can be, as already mentioned, of in¯nitesimal or ¯nite magnitude.

In general, there are three di®erent ways by which the new equilibrium con¯g-

uration may be reached;

(a) by classical or bifurcation buckling, which occurs when the load is (quasistati-

cally) increased beyond a certain level (bifurcation point) causing that an

in¯nitesimally disturbed structure passes from one (unbuckled) equilibrium

state to a distinctively di®erent (buckled) equilibrium con¯guration. A sudden

change of shape of the structure is characteristic for this type of buckling, e.g.

change from axial contraction to lateral de°ection of an axially loaded column in

compression;

(b) by ¯nite-disturbance buckling, which occurs only when a ¯nite disturbance

makes the structure pass between two (not in¯nitesimally close) equilibrium

con¯gurations. Typical examples of such buckling is buckling of a thin cylind-

rical shell under axial compression or buckling of a complete, spherical, thin

shell under uniform external pressure, cf. Ref. 16;

(c) and by a third type of buckling which is known as snap-through or limit-point

buckling when the load is increased in¯nitesimally beyond the critical level

(limit point). This phenomenon is characterized by a sudden jump from one

equilibrium con¯guration to another for which displacements are only larger

than in the ¯rst con¯guration, i.e. they do not change the course of deformation

as do in the case of classical buckling. Typical examples of this type are snapping

of low, pinned arch under lateral load and snapping of a clamped shallow

spherical cap under uniform lateral pressure, cf. Ref. 16.

It is illustrated below that a nonlinearly elastic column, depending upon the

values of di®erent material parameters involved, exhibits all the mentioned stability

characteristics and types of buckling, which are generally observed separately in

distinctively di®erent structural systems. The results of the numerical calculations

are accurate to within 10�6.
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3.1. I Euler's case

As will be illustrated in the ¯gures below, the equilibrium solution is always unique

for a given displacement whereas for a given load multiple equilibrium solution

exists. The graph of characteristic (stability) function which is represented by rela-

tion between the load P and vertical displacement �, cf. Eq. (1), Fig. 1, of the

column's free end during bending, is shown in Fig. 4.

In a linearly elastic material case, i.e. material one (k ¼ 1; "0 ¼ 0), the well-known

force�displacement curve is found, Fig. 4(a). The critical buckling force which is in

this case equal to the bifurcation load is calculated to be at Pcr ¼ Pbif ¼ 0:555N.

Detailed explanation of the stability conditions and all special points in Fig. 4(a) to

4(c) is given in the text below, more speci¯cally in Sec. 3.2.

The bifurcation buckling force in the ¯rst nonlinearly elastic material case, i.e.

material two (k > 1, "0 6¼ 0Þ, is Pbif ¼ 2:210N and the (global) critical buckling force

Pcr ¼ 1:608N. By setting "0 ¼ 0 and thereby simplifying the rheological model (2) to

the case of Ludwick's model, leads to the same problem as has been partially treated

in Refs. 13 and 14.

The bifurcation buckling force was computed also for the second nonlinearly

elastic material case, i.e. material 3 (k < 1, "0 6¼ 0Þ, and is Pbif ¼ 0:277N ¼ Pcr. Note

also that numerically obtained values for bifurcation loads are the same as those

obtained via formulas from Table 1.

Stable and unstable post-buckling shape modes for all three con¯gurations of

material constants are depicted in Fig. 5 for I Euler's case.

Post-buckling shape modes, depending upon the values of di®erent material

parameters involved, for this clamped�free column are shown in Fig. 6 at constant

(a) (b) (c)

Fig. 4. Characteristic P�� curves for I Euler's case.
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Fig. 6. Comparison of post-buckling shape modes for I Euler's case.

(a) (b) (c)

Fig. 5. Stable and unstable post-buckling shape modes for I Euler's case.
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values of characteristic displacement � ¼ 30mm, � ¼ 150mm, � ¼ 310mm,

� ¼ 500mm, � ¼ 740mm, and � ¼ 840mm.

3.2. II Euler's case

Results comparable to those in the previous case are obtained as expected for the II

Euler's case. Practically the same shapes of P�� curves can be observed in Fig. 7.

In a linearly elastic material case, material one (k ¼ 1; "0 ¼ 0), cf. Fig. 7(a), the

well known force-displacement curve is found. A neutral equilibrium is maintained on

segment 0A as load P quasistatically increases from 0 to point A where bifurcation

occurs, Pcr ¼ PA ¼ 2:220N. As P is increasing, two equilibrium solutions are found in

the post-buckling sub-domain, one globally stable on (A)BI branch, and one unstable

solution on (A)CJ branch which corresponds to a straight column con¯guration.

Here, designatiozn (A) means that point A itself is excluded from the segmentsABI

and ACJ. The P�� curve of the nontrivial post-critical branch is monotonic, since

dP=d� > 0 for all positive �. As P is decreasing gradually from I, the unloading path

IBA0 is obtained. The loading and unloading paths, 0ABI and IBA0, respectively,

are thus the same. In addition, if during loading no disturbance is applied up to point

C the column passes from unstable state at C to globally stable state B. The loading

and unloading paths are thus di®erent; namely 0ACBI and IBA0, respectively.

One of the most important results in the present paper refers to the analysis of the

nonlinear material case, (softening-elastic material 2, k > 1, "0 6¼ 0 and hardening-

elastic material 3, k < 1, "0 6¼ 0Þ. In the ¯rst nonlinear material case, Fig. 7(b) shows

that the nontrivial part of the characteristic curve P�� is not monotonic. Namely,

(a) (b) (c)

Fig. 7. Characteristic P�� curves for II Euler's case.
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for a positive displacement increment �, the load P is decreasing on the ABC seg-

ment, but increasing on the CDEFI segment of the path. Clearly, since the area

under the characteristic P�� curve represents the work done on the elastica, this

means a negative slope (dP=d� < 0Þ of the curve signi¯es negative work and thus

statically unstable equilibrium state for a given constant load, and a positive slope

(dP=d� > 0Þ positive work and statically (locally) stable equilibrium state.1 The

proof can be found e.g. in work done by Maddocks.17 PointC is the local minimum of

the P�� curve. Bifurcation buckling force Pbif ¼ PA ¼ 8:840N is found at bifurca-

tion point A which divides the curve of equilibrium states into the unstable branch

AKJ (trivial solution) and the branch which is unstable on the ABC segment,

locally stable on the (C)D(E) segment and globally stable on the EFI segment. It is

observed that the pre-critical sub-domain 0GHA is in neutral state only for

P < PG ¼ 5:256N, i.e. in 0(G) segment. In segment (G)H(A), i.e. for PG < P < PA,

the system is locally stable. At PG there exist two equilibrium states, one globally

stable at point G and one unstable at point C. Furthermore, three equilibrium

solutions exist at PH, two locally stable (points H and D) and unstable at B.

Consider now a straight column at equilibrium state H. A su±cient ¯nite dis-

turbance may cause the column to pass fromH to locally stable stateD. It should be

noted that the * designated part of the characteristic curve is chosen to emphasize

that even a small (small but not an in¯nitesimal) disturbance is su±cient for a

column to pass from the trivial (pre-critical) con¯guration to the buckled one located

on CDE branch. In practice this means that the column may buckle well below the

bifurcation buckling force Pbif ¼ PA. Finally, for P � PA there are two solutions, one

unstable which corresponds to a straight column on AKJ branch and one globally

stable, i.e. buckled column on EFI branch. For a column to jump from the unstable

state K to the globally stable equilibrium state F, only in¯nitesimal disturbance

needs to be applied, obviously. The global buckling load which is the upper limit load

of neutral equilibrium state is therefore in this case PG ¼ 5:256N. In addition, if we

con¯ne the largest disturbance which causes up to e.g. �B change in geometry, then

the critical load is PH.

As expected the loading and unloading paths di®er which means that a hysteresis

loop exists. For example, if an initially straight column is loaded with P, the column

remains straight up to point G. Further increase in force P may result in a violent

jump between the states, e.g. from stateH to stateD if a su±cient ¯nite disturbance

is applied or from A to state E if even an in¯nitesimal disturbance is applied,

followed by DEFI or EFI, respectively. The unloading path is obtained if P is

gradually decreased from I. The column follows the IFEDC states, if there is no

¯nite disturbance applied. A further decrease in P results in a snap back to state G.

At this point the limit-point buckling is observed. If a su±cient ¯nite disturbance is

applied on EDC branch, the column may snap to the state on AHG branch. Point

G is naturally followed by point 0.

In the second nonlinear case, cf. Fig. 7(c), the stability conditions are similar as in

the linear case with one additional observation. At initial post-buckling, more
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precisely at ** designated part of the characteristic curve, Fig. 7(c), a small increase

in load P results in a rather small change of deformation �. The column still bifur-

cates, i.e. the deformation still changes from purely axial contraction to lateral

de°ection. This means there is still a loss of stability, but there are no violent jumps

between states. The critical buckling force is equal to the bifurcation load also in this

case, Pcr ¼ PA ¼ Pbif ¼ 1:109N, but as can be seen from Fig. 7(c) there is practically

no lateral de°ection up to P**.

Stable and unstable post-buckling shape modes for all three con¯gurations of

material constants are depicted in Fig. 8 for II Euler's case.

The in°uence of material on post-buckling shape modes of the hinged�hinged

column can be observed in Fig. 9.

3.3. III Euler's case

Di®erent and more complex results are obtained in the III Euler's case. Characteristic

P�� curves for this hinge�clamp supported column are shown in Fig. 10.

Stability conditions for the III Euler's case are less covered in the available lit-

erature. As can be found e.g. in Refs. 1 and 18�20 nonmonotonic P�� curve of the

nontrivial post-critical branch of solution is obtained in the linear case material one

(k ¼ 1; "0 ¼ 0). It is illustrated also in Fig. 10(a) that P increases with � in segment

ABC and HKLMNPRI, but decreases in the CDEFGH. Bifurcation buckling

(a) (b) (c)

Fig. 8. Stable and unstable post-buckling shape modes for II Euler's case.
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Fig. 9. Comparison of post-buckling shape modes for II Euler's case.

(a) (b) (c)

Fig. 10. Characteristic P�� curves for III Euler's case.
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force Pbif ¼ PA ¼ 4:543N is found at bifurcation point A which divides the curve of

equilibrium states into the unstable branch (A)UQJ (trivial solution) and the

branch which is locally stable on theAB(C) and (H)KLMN(P) segments, unstable

onCDEFGH and globally stable on thePRI segment. PointsC andH are the local

maximum and minimum of the P�� curve, respectively. It should be emphasized

that the pre-critical sub-domain �JT0SA is in neutral state only for P < PT ¼
�3:422N, i.e. in �J(T) segment. Thus the (global) stability analysis may be

important (in view of ¯nite-disturbance buckling) even in the case when load P is

tensile. In segment (T)0SA, i.e. for P, PT < P � PA, the system is only locally stable

since for PS there exist three equilibrium states, two locally stable S, L, and one

unstable F. This means a su±cient ¯nite disturbance may cause the column to

buckle from state S to L. At PT two equilibrium states can be found, one globally

stable at point T and one unstable at point H. Notice also that there exist four

equilibrium con¯gurations for P, PA < P < PC, and three equilibrium con¯gurations

for P ¼ PC. The equilibrium state at point U is unstable which means that an

in¯nitesimal disturbance causes the column to pass to a locally stable state at point

B. Furthermore, if a su±cient (¯nite) disturbance is applied the column jumps to a

locally stable state at N; or if the load is (quasistatically) increased (just in¯nitesi-

mally) beyond the limit-point load PC the column jumps to a globally stable equi-

librium state at point P, i.e. a limit-point buckling is observed. For P > PC there

exist only two solutions, one unstable on (A)UQJ branch and one globally stable on

PRI branch. The column jumps at an in¯nitesimal disturbance from Q to R. Notice

also that the states at G and K have both zero value P which means the horizontal

reactive force alone is su±cient to maintain the static equilibrium of the column.

It is obvious that a hysteresis loop exists also in the III Euler's case since loa-

ding�unloading paths are di®erent. For example if load P is applied and quasista-

tically increased from 0, the column remains straight until the bifurcation buckling

load is reached in state A, then it deforms through states ABC. Since C is a limit

point, a further increase of P results in a snap-through to state P and the states of

the column then follow the branch PRI. The loading path is thus 0SABCPRI. On

the other hand, the unloading path, which is obtained if the load is quasistatically

decreased from I, is di®erent. At ¯rst it follows IRPNMLKH branch and in H

snaps-through to state T. Notice that P is now quite large and negative and the

column is straight. There can be many di®erent hysteresis loops found if we also take

¯nite disturbances into consideration, e.g. loading path 0SLMNPRI, and unload-

ing path IRPNBAS0 if a ¯nite disturbance is applied in S when loading and in N

when unloading or similarly 0SABNPRI and IRPNMLS0 for that matter.

The stability conditions in a nonlinear case, where material 2 (k > 1; "0 6¼ 0) is

discussed, see Fig. 10(b), are similar as in I Euler case, material 2. The only di®erence

is the negative value of the load P for �, �C < � < �E. The part of the characteristic

curve marked with * and therefore the need for introducing ¯nite disturbances into

the analysis is even more obvious here. Namely, the column may buckle, like already

mentioned, well before the bifurcation buckling force is reached when disturbed by
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small disturbance. Therefore Pcr � PA ¼ Pbif ¼ 18:088N. Notice only one limit-point

D is found on P�� curve in this case in contrast to III Euler, material 1. The upper

limit load of neutral equilibrium state is now PD ¼ �3:535N, which means the col-

umn subjected to a tensile load. In this case, practical evaluation of the critical

buckling force which is in generally closely connected with largest disturbances would

be e.g. P*, cf. Fig. 10(b).

In the second nonlinear case, material 3 (k < 1, "0 6¼ 0Þ cf. Fig. 10(c), the stability
conditions are again similar as in the linear case with the same additional observa-

tion. At initial post-buckling, more precisely at ** designated part of the char-

acteristic curve, cf. Fig. 10(c), a small increase in load P results in a rather small

change of deformation �. Again, no violent jumps between states are observed at

initial post-buckling sub-domain up to point C where snap-through occurs. The

critical buckling force is equal to the bifurcation load also in this case,

Pcr ¼ Pbif ¼ PA ¼ 2:269N, but as can be seen from Fig. 10(c) there is practically no

lateral de°ection up to P**.

From comparison of initial post-buckling segments of the diagrams for material 1

and material 2 in Fig. 10 one can perceive that at least one additional character-

istically di®erent P�� curve exists. Within the limitations of the mathematical

model proposed in this study an additional P�� curve with local maximum has been

found for III Euler's case, material 2. The nontrivial post-critical branch of solution

in Fig. 11(a) consists of two segments where dP=d� < 0, i.e. AB and CD, and two

(a) (b)

Fig. 11. Additional P�� curves for III Euler's case, material 2.
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segments where dP=d� > 0, i.e. BC and DEI. From the detailed analysis given

above we characterize segmentsAB andCD as unstable, segments (B)(C) and (D)

(E) as (locally) stable, and the segment EI as globally stable. Similar observations

can be written about the characteristic curve in Fig. 11(b). The main di®erence

between both diagrams is that the lower limit of the globally stable segment in the

second case is higher than bifurcation buckling load.

It should also be mentioned that even up to ¯ve di®erent equilibrium solutions

exist for a given load P, PB < P < PC in Fig. 11(a) and for P, PB < P < PA in

Fig. 11(b).

Stable and unstable post-buckling shape modes for all three con¯gurations of

material constants are depicted in Fig. 12 for III Euler's case.

Post-buckling shape modes, depending upon the values of di®erent material

parameters involved, for this hinged�clamped column are shown in Fig. 13.

3.4. IV Euler's case

Results comparable to those in I and II Euler's cases are also obtained as expected for

the IV Euler's case. Practically the same shapes of P�� curves can be observed in

Fig. 14 and therefore the same remarks can be applied. For columns of material 1, 2

and 3, the bifurcation buckling loads are Pbif ¼ 8:883N, Pbif ¼ 35:362N and

Pbif ¼ 4:436N, respectively.

(a) (b) (c)

Fig. 12. Stable and unstable post-buckling shape modes for III Euler's case.

On Static Stability of Nonlinearly Elastic Euler's Columns Obeying the Modi¯ed Ludwick's Law

1250077-15



Stable and unstable post-buckling shape modes for all three con¯gurations of

material constants are depicted in Fig. 15 for IV Euler's case.

The in°uence of material on post-buckling shape modes of the clamp�clamp

supported column can be observed in Fig. 16.

Fig. 13. Comparison of post-buckling shape modes for III Euler's case.

(a) (b) (c)

Fig. 14. Characteristic P�� curves for IV Euler's case.
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(a) (b) (c)

Fig. 15. Stable and unstable post-buckling shape modes for IV Euler's case.

Fig. 16. Comparison of post-buckling shape modes for IV Euler's case.
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Some remarks. Numerically obtained bifurcation buckling forces for all four Euler

cases have the same values as those obtained via formulas for Pbif , which can be

found in Table 1.

It should also be noted that only solutions for positive y values are taken into

consideration in this article, cf. Figs. 4, 7, 10, 11, and 14. If both branches, obtained

for þy and �y, were considered simultaneously, then there would not be any globally

stable equilibrium states (as we classi¯ed it in post-critical sub-domain) but only

(locally) stable states.

To emphasize, the main practical applicability of our study is when disturbances

are of ¯nite proportions. In real engineering practice this means that equilibrium

states e.g. in Fig. 10(b) for P, P � � P � PA, are \practically unstable" and part of

the solution branch where PM � P � PL is \practically stable".

4. Conclusion

It is generally well-known that under the same boundary conditions multiple con-

¯gurations can exist in nonlinear systems. Indentifying and analyzing these con¯g-

urations is often of crucial importance, especially when studying slender or thin-

walled systems. In the proposed study stability and post-buckling con¯gurations of

slender uniaxial structural elements which could be made from natural rubber or any

other material which obeys the modi¯ed Ludwick's constitutive model were inves-

tigated. It should be emphasized that results obtained can be useful in engineering

practice. Namely, in classical de¯nition of structural stability only in¯nitesimal

disturbances (small perturbations) are employed and therefore only stable and

unstable states are recognized because the analysis is con¯ned to a local region. But,

as shown in this contribution, this is not enough since e.g. the column may buckle

way below the bifurcation buckling force even when disturbed by small disturbance

— therefore Pcr � Pbif . The value of critical buckling load Pcr which depends on the

largest disturbance involved can be calculated numerically. The general mathema-

tical formula for the global buckling load of columns made of modi¯ed Ludwick's

material is yet to be determined.
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