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Approximative formula for post-buckling
analysis of non-linearly elastic columns
with superellipsoidal cross-sections

Mihael Brojan and Franc Kosel

Abstract

Approximative formulas for post-buckling analysis of non-linearly elastic columns made of Ludwick material are devel-

oped for free-clamp, hinge–hinge, and clamp–clamp supports. The columns have a superellipsoidal cross-section.

Comparison between analytically obtained and numerical solutions showed good agreement. Additionally, post-buckling

configurations for all three types of columns and materials are given in diagrams, from where the influence of material

constants on the shape of the deflection curve can be examined.
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Introduction

Slender members under sufficient axial compressive
loadings may exhibit large lateral displacements
which usually lead to sudden failure of structures
long before the maximum stresses exceed the limit
stress. In designing structures and machines, this phe-
nomenon, called buckling, is thus of major concern.
For example, when a straight uniform column is sub-
jected to an axial compression force P, Figure 1(a), it
remains straight when P is small and (usually)
deflects laterally when P exceeds a certain critical
value. This critical value Pcr is often named the
Euler buckling force.

In this article, buckling and post-buckling of uni-
form columns which are made of non-linearly elastic
material are studied as a continuation of the subject
covered by the authors in Ref.1 In the past few years,
similar investigations of geometrically and materially
non-linear problems of beam bending have been
reported by a number of authors. Contributions
that are most closely related to the problem
addressed here can be found in Refs.,2–4 where the
mechanical behavior of a cantilever beam made of
non-linear Ludwick’s bimodulus material is analyzed
when subjected to pure bending; and in Ref.5 where
the moment–curvature relation was derived for fibers

of superellipsoidal cross-section made of non-linear
material for the case of pure bending; and in
Refs.,6,7 where the beam made of functionally
graded non-linearly elastic material of Ludwick type
is considered.

Boundary conditions and critical loads of the col-
umns investigated in this contribution are listed
in Table 1. Critical loads are the solutions of the tran-
scendental equations, cos! ¼ 0, sin! ¼ 0, and
! sin!þ 2 cos!� 2 ¼ 0, which can be obtained via lin-
earization of the problem.

Formulation of the problem

Let us consider a slender, initially straight column of
length L subjected to an axial compression force
P, as shown in Figure 1. The column has a cross-
section of constant width 2a and constant height 2b
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in the shape of the superellipse (cf. §2.1). The math-
ematical model of the discussed problem is based
on the elastica theory. The material of which the
column is made is assumed to be homogenous,
incompressible, and isotropic. The non-linear stress–
strain relation is given by the Ludwick’s formula:

�ð"Þ ¼ signð"ÞE "j j1=n, ð1Þ

where E and n are material constants.
From static equilibrium of internal forces and

inner bending moments which act on an infinitesimal
element of the deformed beam, cf. Figure 2, geomet-
rical relations dx=ds ¼ cos#, dy=ds ¼ sin#, from the
expression for inner bending moment as a function of
normal stress M ¼ �

R
A �ydA, Equation (1), and the

normal strain–curvature expression " ¼ �y��1 and
��1 ¼ d#=ds, we can deduce an equation:

EI1þn
1

n

d#

ds

� �ð1�nÞ=n
d2#

ds2
þ P sin#þH sin# ¼ 0, ð2Þ

which together with the accompanying boundary con-
ditions (cf. Table 1) describes the post-buckling
behavior of columns subjected to an axial force.
Variable s, 0 � s � L, denotes a curvilinear coordi-
nate along the centroidal axis measured from the

fixed end of the column and #ðsÞ represents the
angle between the positive direction of the x-axis
and the tangent to the centroidal axis at point s.
Remark 1. It should be noted that H and M0 are the
reactive force and moment acting in the upper support
of the column, Figure 1(b)–(d). Furthermore,
H, M0 ¼ 0 for I Euler’s case, H 6¼ 0, M0 ¼ 0 for II
Euler’s case, and H, M0 6¼ 0 for IV Euler’s case.

By introducing quantities:

p :¼
nP

EI1þn
, h :¼

nH

EI1þn
, t :¼ pn=ð1þnÞs, ð3Þ

where t 2 ½0, pn=ð1þnÞL�, and introducing parameter �:

� :¼
h

p
, ð4Þ

dividing Equation (2) by p, we obtain:

d#

dt

� �ð1�nÞ=n
d2#

dt2
þ sin#þ � cos# ¼ 0: ð5Þ

Superellipse

A generalized ellipse or superellipse is a closed curve
defined by the following implicit equation:

jzj�

a
þ
j yj�

b
¼ 1, a, b,�,� 2 Rþ: ð6Þ

where a and b are semi-axes. They are special cases of
curves which are known in analytical geometry as Lame
curves. The name superellipse was proposed by Piet
Hein, a Danish poet and scientist who popularized
these curves for design purposes.8

Remark 2. It can be noted that an ordinary ellipse is
obtained if � ¼ � ¼ 2, and further if a ¼ b ¼ 1, the unit
circle is obtained. In the limit case �, �!1, Equation
(6) yields a superellipse which resembles a rectangle,
whereas in the limit case �, �! 0, it resembles
a cross. Some more special cases are depicted in

(a) (b) (c) (d)

Figure 1. Trivial and post-critical shape modes of I, II, and IV

Euler columns.

Table 1. Boundary conditions and critical loads

Euler case Support Boundary conditions Pcr � L
2=ðEIÞ

I Clamp-free #ð0Þ ¼ 0, #0ðLÞ ¼ 0 �2=4

II Hinge–hinge #0ð0Þ ¼ 0, #0ðLÞ ¼ 0 �2

IV Clamp–clamp #ð0Þ ¼ 0, #ðLÞ ¼ 0 4�2
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Figure 3, where values of a, b, �, and � are given in
parentheses, ða, b, �, �Þ.

Superellipse may also be represented parametrically
by:

z ¼a signðcos ’Þ cos ’
�� ��2=�

y ¼b signðsin ’Þ sin ’
�� ��2=� ,

where ’ 2 ½0, 2��. The 1þ nth moment of area can
therefore be determined as shown below:

I1þn :¼

Z
A

y1þndA

¼
y
�

1

2þ n

Z
@A

y2þndz yGreen0s theorem

¼
8ab2þn

�ð2þ nÞ

Z �=2

0

ðcos ’Þ2=��1ðsin’Þ2ð2þnÞ=�þ1d’:

The integral above can be expressed by the Beta
function:

Bð p, qÞ :¼ 2

Z �
2

0

ðcos ’Þ2p�1ðsin’Þ2q�1d’, ð7Þ

which leads to:

I1þn ¼
4ab2þn

�ð2þ nÞ
B

1

�
,
2þ n

�
þ 1

� �
: ð8Þ

Using the identities, cf. Ref.:9

Bð p, qÞ ¼ Bðq, pÞ, Bð p, qþ 1Þ ¼
q

pþ q
Bð p, qÞ

ð9Þ

one can get:

I1þn ¼
4ab2þn

�ð2þ nÞ þ �
B

1

�
,
2þ n

�

� �
: ð10Þ

Remark 3. In the limit case, when �, �!1, it follows:

I1þn ¼
4ab2þn

2þ n
, ð11Þ

and further for n ¼ 1, a well-known formula
I2 ¼ 4ab3=3 is obtained.

Remark 4. The area of a superellipse
R
A dA can be

obtained by setting n ¼ �1 in Equation (10):

A ¼
4ab

�þ �
B

1

�
,
1

�

� �
: ð12Þ

(a) (b)

Figure 2. Free body diagram and infinitesimal element of the deflected column.

Figure 3. Cross-sections defined by superellipse.
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Determination of the critical force

In immediate post-buckling, #ðtÞ is expected to be small
for all t 2 ½0, pn=ð1þnÞ�. Therefore, approximating
sin# ¼

:
# is reasonable. In the I Euler case, H � 0.

Then, Equation (5) can be reduced to:

d#

dt

� �ð1�nÞ=n
d2#

dt2
þ # ¼ 0: ð13Þ

Accompanying boundary conditions are:

#ð0Þ ¼ 0, #0 pn=ð1þnÞL
� �

¼ 0: ð14Þ

Introducing function u, such that:

#0ðtÞ ¼: uð#ðtÞÞ: ð15Þ

and differentiating with respect to variable t give:

#00ðtÞ ¼ u0ð#ðtÞÞuð#ðtÞÞ: ð16Þ

Equation (13) can now be rewritten as:

u0u1=n þ # ¼ 0: ð17Þ

Integrating and considering Equation (15) yields:

n

1þ n
ð#0Þð1þnÞ=n þ

#2

2
¼ c: ð18Þ

It follows from the boundary condition
#0ð pn=ð1þnÞLÞ ¼ 0 that:

c ¼
#2e
2
, ð19Þ

where #e :¼ #ð pn=ð1þnÞLÞ. From Equations (18) and
(19), one can obtain:

d#

dt
¼

1þ n

n

� �n=ð1þnÞ
1

2

� �n=ð1þnÞ

#2e � #
2

� �n=ð1þnÞ
: ð20Þ

Rewriting the above equation and integrating
over the domains of # and t on each side of the equa-
tion lead to:

Z # pn=ð1þnÞLð Þ

#ð0Þ

d#

#2e � #
2

� �n=ð1þnÞ

¼

Z pn=ð1þnÞL

0

1þ n

n

� �n=ð1þnÞ
1

2

� �n=ð1þnÞ

dt: ð21Þ

The integral on the RHS is equal to:

SRHS ¼
1þ n

n

� �n=ð1þnÞ
1

2

� �n=ð1þnÞ

pn=ð1þnÞL: ð22Þ

As already mentioned, #ðtÞ is expected to be small at
immediate post-buckling and it is therefore reasonable
to linearize function #, so that:

#ðtÞ ¼
:
#ep
�n=ð1þnÞL�1t: ð23Þ

Taking this into account, the integral on LHS can be
written as:

SLHS ¼
#ð1�nÞ=ð1þnÞe

pn=ð1þnÞL

Z pn=ð1þnÞL

0

dt

1� p�2n=ð1þnÞL�2t2ð Þ
n=ð1þnÞ

:

ð24Þ

Introducing variable w ¼ p�2n=ð1þnÞL�2t2:

SLHS ¼
#ð1�nÞ=ð1þnÞe

2

Z 1

0

w�1=2ð1� wÞ�n=ð1þnÞdw: ð25Þ

Beta function B, given by Equation (7), can also be
written in the following form, Ref.:9

Bð p, qÞ ¼

Z 1

0

xp�1ð1� xÞq�1dx: ð26Þ

Hence:

SLHS ¼
#ð1�nÞ=ð1þnÞe

2
B

1

2
,

1

1þ n

� �
: ð27Þ

Equating (27) and (22) results in:

pðnÞ ¼
n#ð1�nÞ=ne

21=nð1þ nÞLð1þnÞ=n
B

1

2
,

1

1þ n

� �ð1þnÞ=n
ð28Þ

and:

PIðnÞ ¼
#ð1�nÞ=ne EI1þn

21=nð1þ nÞLð1þnÞ=n
B

1

2
,

1

1þ n

� �ð1þnÞ=n
: ð29Þ

which follows from ð3Þ2 additionally.

Approximative formula for post-buckling behav-
ior analysis of non-linearly elastic columns with super-
ellipsoidal cross-sections is therefore:

PIðnÞ ¼
2ð2n�1Þ=nE#ð1�nÞ=ne ab2þn

ð1þ nÞð�ð2þ nÞ þ �ÞLð1þnÞ=n

B
1

�
,
2þ n

�

� �
B

1

2
,

1

1þ n

� �ð1þnÞ=n
: ð30Þ

The critical force Pcr for the linearly elastic column
can be found by setting n ¼ 1:

PI, cr ¼ EI2
�2

4L2
: ð31Þ
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Expression for PIIðnÞ can be derived in a similar
way, namely, considering obvious natural symmetry in
the deflection curve of II Euler case, the first boundary
condition in (14) can be replaced by # pn=ð1þnÞL=2

� �
¼ 0.

Thus, an equation, equivalent to Equation (21), can be
written 2

R #ð pn=ð1þnÞL=2Þ
#ð pn=ð1þnÞLÞ . . . ¼ 2

R pn=ð1þnÞL=2
pn=ð1þnÞL . . . Parameter

#e :¼ #ð pn=ð1þnÞLÞ and approximation
# ¼
:
#eð2=ð p

n=ð1þnÞLÞt� 1Þ are used to get the following
expressions:

PIIðnÞ ¼
2#ð1�nÞ=ne EI1þn
ð1þ nÞLð1þnÞ=n

B
1

2
,

1

1þ n

� �ð1þnÞ=n
, ð32Þ

PIIðnÞ ¼
23E#ð1�nÞ=ne ab2þn

ð1þ nÞð�ð2þ nÞ þ �ÞLð1þnÞ=n

B
1

�
,
2þ n

�

� �
B

1

2
,

1

1þ n

� �ð1þnÞ=n
, ð33Þ

from where:

PII, cr ¼ EI2
�2

L2
: ð34Þ

arises in the case of n ¼ 1.
From double natural symmetry in the deflection

curve of IV Euler case, an expression for PVIðnÞ
can be derived. In this case, the second bound-
ary condition is replaced by #0 pn=ð1þnÞL=4

� �
¼ 0. An

equation, equivalent to Equation (21), can now be writ-
ten 4

R #ð pn=ð1þnÞL=4Þ
0 . . . ¼ 4

R pn=ð1þnÞL=4
0 . . . Parameter #e

and approximation for # are now #e :¼ #ð pn=ð1þnÞL=4Þ
and # ¼

:
ð4#e=xÞt. Thus:

PIVðnÞ ¼
2ð1þ2nÞ=n#ð1�nÞ=ne EI1þn
ð1þ nÞLð1þnÞ=n

B
1

2
,

1

1þ n

� �ð1þnÞ=n
,

ð35Þ

PIVðnÞ ¼
2ð1þ4nÞ=nE#ð1�nÞ=ne ab2þn

ð1þ nÞð�ð2þ nÞ þ �ÞLð1þnÞ=n

B
1

�
,
2þ n

�

� �
B

1

2
,

1

1þ n

� �ð1þnÞ=n
, ð36Þ

and for n ¼ 1

PIV, cr ¼ EI2
4�2

L2
: ð37Þ

Remark 5. The results represented by Equations (31),
(34), and (37) are identical to well-known formulas
found in the literature, Ref.10

Examples

In this section, we showa comparison between the results
obtained from the formulas (30), (33), and (36) we con-
stituted and numerical solutions which were obtained by
applying the Runge–Kutta–Fehlberg integration and

shooting method. Additionally, post-buckling configu-
rations for all three types of columns and materials
(n5 1, n ¼ 1, n4 1) are given for illustration.

I Euler case

Post-buckling force P as a function of angle of rota-
tion #e ¼ #ðLÞ is shown in Figure 4 for a free-clamp
supported column. The results of numerical and analyt-
ical calculations are in good agreement even at rel-
atively large angles of rotation. Namely, at
#e ¼ 0:285, #e ¼ 0:518, #e ¼ 0:701, and #e ¼ 1:030,
the differences between numerically and analytically
calculated values of post-buckling force in the n ¼ 2
case are 1:1%, 3:5%, 6:4%, and 13:6%, respectively.
In the case of n ¼ 0:6, there are differences of 1:1%,
3:2%, 6:4%, and 12:1% at #e ¼ 0:296, #e ¼ 0:517
#e ¼ 0:735, and #e ¼ 1:021, respectively.

Figure 5 illustrates the results calculated from the ana-
lytical formula (30). It shows the post-buckling load as a
function of angle #e for n ¼ 0:6 for different shapes of
the cross-section. It should be emphasized that these
results arise from one formula only, cf. (30).

The influence of material constant n on post-buck-
ling configurations for a free-clamp supported column
is depicted in Figure 6. The diagrams are displayed at
constant values of #e ¼ 0:5, #e ¼ 1:0, #e ¼ 2:0, and
#e ¼ 3:0.

II Euler case

Results comparable to those in the previous case
are obtained for a hinge–hinge supported column,
Figure 7. The difference between post-buckling loads cal-
culated via numerical and analytical approaches
are 1:3%, 3:2%, 6:4%, and 13:6% at #e ¼ 0:308,
#e ¼ 0:495, #e ¼ 0:701, and #e ¼ 1:030, respectively

Figure 4. Comparison between analytical and numerical

solutions.
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for n ¼ 2. For n ¼ 0:6, there are differences of 1:1%,
3:2%, 5:8%, and 12:1% at #e ¼ 0:296, #e ¼ 0:517,
#e ¼ 0:699, and #e ¼ 1:021, respectively.

A similar influence of material constant n on
post-buckling configurations is also noticeable in the
case of hinge–hinge supported column, Figure 8.

IV Euler case

As expected, the results obtained for a clamp–clamp
supported column are comparable to those in
both previous cases, Figure 9. The difference between

post-buckling loads calculated via numerical and ana-
lytical approaches are in this case 1:2%, 3:7%, 6:4%,
and 13:6% at #e ¼ 0:296, #e ¼ 0:530, #e ¼ 0:701, and
#e ¼ 1:030, respectively for n ¼ 2. For n ¼ 0:6, there
are differences of 1:3%, 3:1%, 6:4%, and 11:7% at
#e ¼ 0:342, #e ¼ 0:507, #e ¼ 0:735, and #e ¼ 1:0,
respectively. In this case, #e ¼ #ðL=4Þ.

Post-buckling configurations in correlation with
the influence of material constant n on deformation
for a clamp–clamp supported column can be found in
Figure 10.

Figure 6. Post-buckling configurations for free-clamp sup-

ported column. Figure 8. Post-buckling configurations for hinge–hinge sup-

ported column.

Figure 7. Comparison between analytical and numerical

solutions.

Figure 5. Post-buckling load as a function of the angle of

rotation #e.
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Conclusion

The problems which involve geometrically exact
mechanics, for example, post-buckling analysis of col-
umns are usually difficult to solve. Since analytical
solutions are quite rare one has to rely on finding
the solution numerically, which can be quite time
consuming. The results of this article are useful in
engineering practice when analyzing post-buckling
behavior of non-linearly elastic columns, e.g., made
from rubber. Relatively simple analytical formulas
are constituted for free-clamp, hinge–hinge, and

clamp–clamp supports of columns which have super-
ellipsoidal cross-sections and can therefore be of an
arbitrary shape between an ellipse and a rectangle.
The accuracy of the analytical formula has been val-
idated numerically, applying the Runge–Kutta–
Fehlberg integration and shooting method. A good
agreement between the numerical and analytical
approaches has been confirmed for relatively large
angles of rotation for all three types of supports dis-
cussed. Additionally, post-buckling configurations for
all three types of columns and materials (n5 1,
n ¼ 1, n4 1) are given for illustration. The diagrams
from which the influence of material constant n on
the shape of the deflection curve can be examined are
displayed at four constant values of angle #e.
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