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We demonstrate a computational model for the application of the micromechanical approach to modeling of
superelasticity in shape memory alloys. The model is based on finite element method, where each finite
element represents a single crystal grain in the polycrystalline structure. The constitutive equations are
integrated at each Gauss point by a return mapping algorithm. In this manner good stability and convergence
of the model is achieved. Material properties for Ni-Ti alloy (50.8 at.% Ni) obtained from literature and from
our own experiments were applied to the model and a sample calculation of a 3D model subjected to
uniaxial loading was performed. The results were compared to experimental results obtained from tensile
and compressive tests on a universal testing machine. In general the presented model predicts well the level
of the superelastic stress plateau and maximum transformation strain in tension. Predictions in compression
do not agree well with the experimental findings but the overall characteristics of the tension-compression
asymmetry are predicted correctly.

1 Introduction

Shape memory alloys (SMA) are considered smart materials due to their capability to recover their original shape
after being subjected to a certain thermomechanical loading. The term superelasticity (also pseudoelasticity) refers
to the capability of shape memory alloys to recover their original shape upon unloading after sustaining
considerable deformation (of the order of 8 %) under an applied mechanical load. The reason for shape recovery
lies in the thermoelastic martensitic transformation during which the crystal structure of a material changes. To
exhibit superelastic properties a material must initially be in a high-temperature phase called austenite or parent
phase. Under mechanical loading the initially austenitic material undergoes stress-induced martensitic
transformation (forward transformation) and austenite is transformed to martensite. The properties of the
transformation are such that large strains can be accommodated without producing plastic (unrecoverable) strains.
During unloading martensite reverts to the parent phase in its original orientation (reverse transformation), therefore
the material regains its original shape. A typical response of a one-dimensional element (e.g. wire) subjected to a
uniaxial loading cycle is shown on Fig. 1. At point A the critical stress for the onset of martensitic transformation is
reached, which is reflected in tloee diagram as a radical reduction in stiffness. The martensitic transformation
progresses at practically the same stress level (depending on the type of material) until the whole material is
transformed to martensite (point B). On the& diagram this is again noted by the radical change in stiffness.
During unloading the material begins to transform back to austenite when critical stress for reverse transformation
is reached (point C). This stress is lower than the critical stress for the forward transformation as a consequence of
energy dissipation during martensite growth and a typical hysteresis loop can be observed.

From an engineering standpoint of view the most interesting characteristics of a superelastic material are the
level of the stress plateau of forward and reverse transformation, the maximum recoverable strain and the
temperature dependence of the response. Therefore, a good material model should predict well these three
characteristics. However, because of the complexity related to the martensitic transformation (dependence on stress,
temperature, loading history and microstructure) the constitutive behaviour of SMA is difficult to predict.
Nevertheless, a few models were developed that can be used effectively for predicting superelastic response under
different loading conditions. For problems of uniaxial tension see for example [1], [2] and [3], bending of
superelastic beams has also been widely studied, see for example [4] and [5]. Recently major efforts have been put
towards obtaining a more general three-dimensional model, see for example [6-12], as it is expected that further
interesting behaviour could be observed under multi-axial loading as reported in [13] and [14]. Interested reader can
find a more extensive review of the existing models in a recent review paper by Patoor et al. [15].
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Fig. 1 Typical superelastic response of a one-dimensi8heA element.

Most of the published material models utilize orighe two main approaches to constitutive modeliifig
SMA: the phenomenological or the micromechanicg@irapch. The former derives the constitutive equistioased
on macroscopical observations utilizing the metthoghp known from modelling of plasticity. The maidwantage
of such approach is that material parameters caallyde identified by classical experiments arat the resulting
equations can be solved numerically by well establii methods from plasticity modelling. Therefetegh models
are suitable for engineering practice. Howevergeimost of the experimental data is obtained froaxial tests
theese models are difficult to expand to three dsimns. On the other hand, the micromechanical campr is
based on studying crystallographic and microstmattproperties of martensitic transformation at ¢hgstal grain
scale, while macroscopical properties are predictézing multi-scale modelling techniques. Sugbpeoach in
itself bears no limitations as to the loading ctinds (multi-axial or uniaxial) and can be implertexhin three
dimensions directly. However, the material paramsesdould be determined on single crystal specimdmsh are
difficult to obtain for some materials. Another aiwvantage of modelling macroscopical structuresh wit
micromechanical models is the high computationtdrisity required to simulate large structures. Hmvewith
advance of microprocessor technology calculatioitis multi-scale methods can be performed in redsienéme.

The application of the micromechanical approachStdAs is justifiable, since the mechanisms of
martensitic transformation at the crystal lattieedl can be well described applying the ideas atinaum theory
of crystalline solids introduced by Ericksen [16};1€e also [20]. The formation of microstructuea de predicted
by the phenomenological theory of martensitic tfamsation originally developed by Bowles and Mackien21,
22] or rather by a more general approach of enevigymization presented by Ball and James [23]. frfemtioned
theories are proven to describe well the fundanhdrgthaviour of martensitic transformation at thgstal lattice
level. However, at the crystal grain level addiiboomplexity related to the interaction of austeind martensite
arises. Therefore, during the derivation of constie equations various assumptions can be madsitirdficantly
effect the quality of predictions. In this paper w#l mainly focus on the effect of the differende elastic
properties of martensite and austenite. This isswextensively studied by Wang [24] who developadeaplicit
integration scheme which requires relatively sri@dld steps to converge. Thamburaja [12] also takesunt of
different elastic properties in his calculationg ha does that ad-hoc after the thermodynamicairdyiforce has
been derived under assumption of equal elasticartigs (see Chapter 2 for details). In this marsmne of the
computational complexity is avoided but the effethon-constant elastic properties on superelastass plateau
is neglected. Effects that are not addressed inptesented model include the effect of irregulesitin the
microstructure (e.g. dislocations, precipitatesh][2the reorientation and detwinnning of marteng2é] and
thermomechanical coupling [27, 28], among others.

If polycrystals are studied, relations between tedygrains should be described. To avoid furtheysptal
complexity, we adopt the scheme proposed by An28§ where polycrystals are modeled by means ofittie
element method (FEM). Such approach also allowstindy of effect of material texture, which is thain reason
for the tension-compression asymmetry observediprerzlastic specimens [12, 30]. Polycrystals cambdeled
exactly using modern imaging techniques [31], caroba random structure resembling a generic ppdyal by
using Voronoi diagrams [32] or can be simplified lsing finite elements of regular shapes (squdrisgles,
cubes etc.). In general, simulations with regsla@ped elements provide reasonable results fomtwoscopic
stress-strain curves [31], which is what will bedseed on in this paper. Furthermore, we chose tefreach grain
with only one finite element. Breaking a crystahigrinto more finite elements would result in beitesight into
local state inside the crystal grain, but thatas of our interest. The presented approach is ceetipnally very
intensive therefore efforts to achieve effectivgoaithmic treatment and reduce computation time \agy
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important. In our model this is achieved by appdyan implicit scheme which enables calculation$\hatger load
steps. Furthermore, strategy for active varianiectien is proposed and a sub-stepping algorithr3] [®
automatically adjust load steps is utilized.

This paper is organized as follows: for sake of pateness and better understanding of the subjeatil
first briefly present the fundamentals of derivitige constitutive equations based on micromechasficSMA.
Next, a numerical model based on the finite elenmesthod will be presented. Special emphasis wilgiven to
the strategy of active variants selection and &ithplementation of non-constant elastic properfiége scope of
our work is also to compare the numerical resualthe experimental results in order to evaluatentjtadively the
performance of the presented model. The compangitinbe done on a uniaxial case of loading sinc®djo
experimental results can be obtained, mainly in foren of ao-¢ diagram as shown on Fig. 1. Examples of
calculations on a cube consisting of 343 graingesied to uniaxial loading will be shown. The esipental
section of this paper will also provide detailefbimation about procedures used to determine nadigairameters.

2 Constitutive equations

When using the micromechanical approach we distiigbetween three scales. Namely, the microscate s
which is the scale of the microstructure at thestalylattice level, the mesoscopic scale whichhes d¢cale of a
crystal grain and the macroscopic scale whichassttale of a polycrystal (Fig. 2).

(o)
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Y
macro scale ‘%
(polycrystal) S
meso scale
(crystal grain) twinned martensite
micro scale

(crystal lattice)

Fig. 2 Different scales utilized in the micromechanicgbagach.

Since martensitic transformation is diffusionlesscan be considered at the microscopic scale as a
continuum deformation of the crystal lattice. Thefaitmation is described by a transformation matiat links the
martensitic and the austenitic lattice. The tramsfition matrix can be calculated if lattice conttasf both lattices
are known. Due to different symmetries of the ¢ai there are more than one transformation matpassible. It
is said that different variants, called lattice respondence variants (CPV), exist. In case of Skh&saustenitic
lattice always has higher symmetry, hence differeattensitic lattice variants exist. The austerdttice of Ni-Ti
is cubic, while the martensitic lattice is monouwdir{fFig. 3), therefore there are 12 possible vasigitPV) of
martensitic crystal lattice due to loss of symmetry

Fig. 3 The austenitic (left) and the martensitic (riglatltice of Ni-Ti alloy.



As a consequence of energy minimization [20] cofbpamartensitic variants form so called twins (Fg
(two variants form an interface called the twin bdary). It can be shown that in Ni-Ti a single aati of
martensite cannot form a coherent interface witktenitic lattice. However, a coherent interface banformed
between a fine mixture of martensitic twins andtewite (Fig. 4). The interface is actually not ghét has some
finite thickness), but from the mesoscopic poinviefw it is considered to be a plane and it isezhk habit plane.
In Ni-Ti there are theoretically 192 possible ifiees between austenite and martensitc twins, iyt 24 have
been experimentally observed [20]. Therefore @asmonly said that 24 habit plane variants of nmesite (HPV)

exist. Each of the 24 variants is identified byegter normal to the habit planen() and a directional vectoi( ),

wherer= 1, ..., 24 denotes the varianBoth vectors can be calculated from the crysgafiphic theory of
martensitic transformation, given that the lategameters of austenite and martensite are known.

habit plane

austenite twin boundary

martensite HPV r Fig. 4 Twinning in martensite and the definition of hatiiine variants.

In a crystal grain the crystal lattice is ideallgnogenous so it is reasonable to define a crystah go be
our representative volume element (RVE). A singlgstal grain can be considered a solid body subgetd
boundary conditions in form of traction or displamnts. The reference configuration of a grain ined as the
configuration when material is fully austenitic amshloaded. The areas of martensite that form when t
transformation is in progress can be considereddchssions (if equal elastic properties of both ggwmare assumed)
or inhomogeneous inclusions (if different elastiopgerties are assumed) in view of the Eshelby'srthef
inclusions [34]. Since martensite is formed in tsvime can think of HPVs as the basic »units« of emmite at the
mesoscopic level. If micromechanical analysis ide¢operformed, the intrinsic deformation (eigenejraf each
martensitic domain must be determined. With noramal directional vector known the eigenstrain ofrtiie HPV
can be determined from the crystallographic theaty

r,r_l r r r r —
; _E(b' m +bimy ), r=1,.,24. (1)

£
The superscriptts« in (1) implies that this strain is a consequenicie martensitic transformation and can also be
called transformation strain.

The derivation of constitutive equations can beedwiithin the scope of irreversible thermodynamind a
the concept of materials with internal variables, [36]. Within this theory the thermodynamic stata material is
completely determined by a set of external (i.es¢hthat can be observed) and internal state Vasialm our case
the external variables are stress and temperathite the internal variables are the volume fradiof each HPV
of martensite. Volume fractions are defined as

r
fr=Y_ . r=1.24, @)
\%

whereV' is the total volume occupied by theéh HPV of martensite and is the volume of the crystal grain. The
total fraction of martensite is therefore

" Indical notation is used throughout the articl@eve lower indices are tensorial and upper indieemte the number of variant, the number of iterati
or load step.
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=3 g ©)
r=1

and the following limits apply
0<f'<l,r=1,.,24 andO< f <1. 4)

To characterize a material an expression for anthdynamic potential as a function of state varigheist
be derived. In our case the thermodynamic poteigiahosen to be the Gibbs energy. With the assomputf
homogeneous temperature distribution and isotrpmperties the expression for the Gibbs free enefgysingle
crystal of a SMA is [11, 37]:

l ) 124 24
—_ ro_ _ _ pr
41/_§aijsljklak|+aijEij B(T-T,)f ng,;H fo (5)

where g; is the volume average stress tensor &pds the compliance tensor which can be constain §kl] or

can vary with transformation evolution as in [3W].different elastic properties in martensite angtanite are
assumed, a simple rule of mixture can be usedtermi&e the actual compliance tensor during tramsébion

S = (1_ f)Sj/?(l + fSu!\Ql ' (6)

where S;jﬁl is the compliance tensor of a completely austenitaterial { = 0) and SJ.“Q, is the compliance tensor of

a completely martensitic materidl< 1). In (5) Eiﬁr is the average transformation strain tensor adefieed as
24
EF=)frer )
r=1

The third term in (5) is the contribution due te tHifference in chemical free energy of martenaite
austenite. Equilibrium temperatufg is the temperature where the chemical free enexfiboth phases are equal.
If there were no non-chemical contributions to thil Gibbs free energy the forward and reversesframation
would both take place at constant temperalgrélowever, due to non-chemical contributions fordvand reverse
transformation start at different temperatures arednot isothermal processes. If the temperaturgofi\start of
forward transformation in unloaded sample and #raperature A of finish of the reverse transformation are
known, Ty can be estimated from the following equation [38]:

T, :%. @)

In the vicinity of Ty it is assumed that the difference in chemical gyeés linear with temperaturé.
CoefficientB is a material parameter that defines the linepeddency. In practic&® describes the dependency of
the critical stress for the onset of the stresaiged transformation on temperature. The last tern(b) is the
contribution due to the interaction between difféldPVs. Namely, with creation and growth of eadP\VHa stress
field is created that can either promote or obstthe growth of other variants. This influence aptured in a
24x24 matrixH"".

The driving force for the transformation of théh HPV is determined by the equation

ro_— a[// — 1 tr,r N prgp 9
F arT _Eo-ijASjklakl +0,6]" ~B(T-Tg) -2 H" ", ®)
p=1

where AS,jkI :S”.""kl —Slj’f(l. Note that the first term in (9) was neglected[12] although non-constant elastic

properties were later taken account in the Hoolests(11).

For martensite to grow inside austenite, the iamfbetween the two must move. The movement of the
interface is not frictionless, therefore dissipatioccurs during growth of martensite. Taking intxaunt the
second law of thermodynamics results in the faat thr the transformation to proceed the drivingcéomust reach
a certain critical forc&°. It is assumed that the critical force does naingje during the transformation, resulting in



the consistency equatidd = F° if forward transformation is in progress on vatianor F' = -F° for reverse
transformation (we assume resistance to movingfatde is equal regardless of the direction of moxeth It
should also be noted that state witer F° is physically inconsistent.

From the definition of the Gibbs energy the equafar the total strain tensor follows as

-

i = ao; =S+ Ei;r . (10)

Eqg. (10) can be written more familiarly in the foohthe Hooke's law
0; =Cy (Ekl -Eyq )* (11)

whereCjy is the stiffness tensoqjkl = S;j‘kll) andE, - E,f, can be identified as the elastic part of the stransor
so the total strain tensor can be expressed as

Eij = E”?' + Ei;' . (12)
As will be shown in the next chapter, it is necegda explicitly express the dependence of thersis

tensor on the martensite volume fraction. The esgiom for Cjq can be derived from (6) with additional
assumption that elastic properties of martensiid aumstenite differ only by a facta, that is S”.“ﬁ, :aSJ.’Q,. If

isotropy is assumed factaris equal to the coefficient of Young's modulusaaktenite divided by the modulus of
martensite. Eq. (6) can now be rewritten as

S = (1_ f+ fa)Sj/;I .

Taking into accoun(}ijﬁI = (SjAkl )_l we arrive at the following expression

1
S o -

3 Numerical modelling

3.1 Single crystal equilibrium

The problem of the local equilibrium of a singleystal can be solved incrementally with implicit med
(backward Euler integration) which gives us a stree of return mapping algorithms. By using implioiethod
bigger load steps can be used without loss of acgusr convergence problems. The total load idéiiinto finite
number of load steps. The reference state is aradatl completely austenitic crystal at temperafufe=0, r=1, ..,

24, E;=0). Values gy f"r =1, ., 24 at load step and the total strairEi;”lat stepn+1 are known and the

n+l gr,n+l —
=

unknown valuesaij 1, .., 24 at step+1 must be calculated. Following steps must bertake

1. Totally elastic response is assumed in order toutate a trial value of the stress tensor:

n+ltrial — ~n n+l _ ptr,n
Jii _Cijkl (Ekl Ekl )'

where
_ 1 A
Ci = mcm :

2. It must be checked whether the transformation d¢@mrdF'=F°"is met by calculating a trial driving force for
each variant = 1, .., 24 (in the following equation load stegéx is omitted for clarity):

" Here only the forward transformation is considerdalogy applies for the derivation in the caseesferse transformation, where of course condition
F' = F°is checked.
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Fr,tral - 2 tral ASJH Ulirlal 0.}ra| glgr,r _ B(T _TO)_Z H prf p.n

] [

In general it cannot be expected that condifbf¥ =F° will be met exactly. If for all variants= 1,..,
24 F""<FC there is no transformation in progress. Hence,résponse is totally elastic and no further
calculation is necessary and next load step caaplpdied since in this case the trial state is digtube
physically correct state. If suchexists thaF"">F°then our trial state is physically inconsistentset of
active variantd™ including all variants for whick""*>F¢ is created:

M={rF"™ >Fr=1.24
before proceeding to step 3 to fix this state.

The new stress tensa:r“+1 is expressed with trial values. Combining (118)(and (7) the updated stress
tensor can be expressed as:

N+ l n+: r,nt r,r
gj" = T Q- fl g fig Ci [Ek, ey j (14)
r

where changes in volume fractiop$ "™, r = 1, ..,24, are defined from
frmt = f00 4 Af 00 r=1..,24.

In the following derivation it is desirable to a@guequations that are linearly dependent on clenge
in volume fractions. To achieve this and withoutrgecing much accuracy (assuming that load stepsat
too big and factoa is not extremely big) Eq. (13) is linearized ardtih

dC; 1-a
n+l _ ~n ijkl n#l _ ~n A r,n+l
Cukl Cukl af " Af Cukl mcijkl ;A :

Eqg. (14) now becomes

n+1 (C:UnkI + b CuAkl zAf r, n+1j[ E|?|+l EE n zAf r, n+1“;..lt(rI rj -

rar rar ’ (15)
= a.ijn+1,tr|al _ Cijr:d zAf r,n+1“;..lt(rI LS b C|]Ak| (En+l Ezn )ZA]: r,n+l _ anijAkl zAf r,n+lZAf r,n+l£It<|i i
rar rar rar rar

where for clarity factob” is introduced as
b" = ]'_—a,
(- "+ traf

If load steps of reasonable size are used it i®@able to neglect the term quadratic Af "in (15).
Combining (9) and (15) the driving force at stefil can be expressed as:

F r,n+l ASukl [ n+l,tr|al ”pq zAf mn+l tr m 4 b CA (Egﬂ Etr n)z Af mn+lj*

1pq
mar

mar

+ a.i;wl.trlal I'jr i |Jk| [zAf mn+:|.“;..it<rI mj I:r iy [b Cuﬁl (E;lﬁl. Elz n)z Af mn+l] I'jr i

mr mr

_ B(T _To)_ZH m ¢ mn _ZH m Af M0t
nor mor

* [ n+l,tr|al klpq zAf m, n+l tr m 4 b Clﬁpq (E;+1 Etr n )z Af mn+lj
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For all r OT the conditionF"""'=F¢ is enforced which results in a nonlinear systeragfations with
only unknowns beingAf "™ r O . The system can be solved by Newton-Rhapson mettithdinitial
values set to zero.

4. The solution from step 3 must be checked for playstonsistency, i.e. if forward transformation s i
progress all valuedf "™ r 0" should be positive. If there agf "™ r O with negative values, the most
negative is eliminated from the active variants[28} and a new seff is defined:

r=r —{r|af "™ =min(af "4 0T}
The algorithm now returns to step 3 to calculate melues Af "™ r OT . If there are no negative values it
proceeds to step 5.

5. Updated stress tens«arij”+l is calculated from (15) and then the updated dgiforcess™™*, r = 1, .., 24. It
might happen that some of the newly calculatedinigiforces are physically inconsistent, F&>F°. If this
occurs the variant with the most positive drivingce is added to the set of active variants:

r=r O{F ™ =max{F ™ Or;F > )

and algorithm returns to step 3 to calculate nelwesaAf "™ r O on this new set. During our calculations

it proved useful not to add new variants to theisdhe first Newton iteration of the global FEMugdion
solution (explained below), since the predictiontlué active variants set from the trial state igémeral
correct, but can be distorted due to local imbatathat occurs after updating the stress at eack<3aaint.
Furthermore, it also proved useful to set a tolegafor the differenc&’-F® based on the current error of the
global FEM iteration (residual of (17)). That idlife error is still very large a variant is addedtte set only
if the differencem"-F¢ is greater than half of the error. When erroesslthan 10a new variant is added, no
matter how big the differencé’-F° is (as long as it is positive). If there are neiamts for whichF'>F°
algorithm proceeds to the next load step?).

6. It should be noted that some variants that weraietited in step 4 can be re-added in step 5 [38 Gan
lead to an infinite loop in the algorithm. To pret¢his, the following safety mechanism is includédtep
5 is repeated more than 24 times the load stejvided by two and the calculation is repeated frstep 1.
During our calculations this proved to be an effectmechanism for achieving convergence of the
algorithm.

3.2 Polycrystal modelling
Polycrstals are modeled with the finite elementhodtwhere each finite element represents a crgsah. The
orientation of each grain is defined by three Ealegles §,3,p). The standard x-convention [39] is used to define
the angles as is shown on Fig. 5. The matrix fangformation from local (crystal grain) to globpblycrystal)
coordinate system is:
COS@Ccosp —cosdsingsinp  singcosp +cosdcospsinp  sindsinp
T(@ 2, p) =| —cospsin p —cosdsingcosp —sin@sin p +cosF cospcosp cospsingd
singsing —sing cosg coss
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Fig. 5 Definition of the Euler angles used to determiredhientation of the local
coordinate system (xyz) in the global coordinatteaw (XYZ)

For the construction of the global FEM equationsitnecessary that parameters and variables ohall t
elements are expressed in the global coordinatersys herefore, when solving local equations iitdirlements
(i.e. crystal grains) the habit plane vectors mhesttransformed with the Euler transformation mapnor to
performing any calculation. Next, the equationshef RVE are solved at each Gauss point of finienelnts by the
algorithm presented in chapter 3.1, thereby achgVocal equilibrium. Global equilibrium (equililtin of the
finite element mesh) is achieved iteratively byanaing internal and external forces. Our problefoimulated as
strain driven, therefore displacementg 6f all the nodes must be determined first from ¢iobal FEM equation
for the trial (i.e. elastic) state. With known dmspements the total strain tensor is determineunh filze linear strain
equation:

1

Eij :E(ui,i +uj,i)' (16)

Strain from (16) is then our input into the algbnit from chapter 3.1 and the output are the steessot and
updated martensite volume fractions at each Ganigs. Based on the calculated stresses the intéorads in our
finite element model can be calculated (see e@.ff details). For structures in equilibrium tliggces should be
equal to external forces (loads), that is:

Fiext _ Fiint - 0’ (17)

where Fii”‘ and F* are vectors of internal and external forces (mobé confused with the driving force),

consecutively and their dimensions are the numbeiegrees of freedom of the finite element modeg. (17) is
actually a system of nonlinear equationsuiirz;inc:eFi"‘t = Fi"‘t (uj ) which can again be solved by the Newton-

Rhapson method if the jacobian can be calculatelfowing the procedures of the nonlinear finitereémt method
(see e.g. [40]) it can be shown that the jacob&mlme calculated if we can find the derivative toéss tensor with
respect to strain tensor. From (15) it follows:

aa-ijnﬂ_ n _~n aAfr,n+l tr,r M _~A n+l _ ptron aAfr'nﬂ M _ ~A r,n+l 18
aEkI _Cijkl Cijmn% aEkI gmn +(Cijmn Cijmn)(Emn Emn ); aEkI +(Cijkl Cijkl );Af ( )

To evaluate (18) the derivative of martensite vaumaction increment with respect to strain termsast be
found. By taking into account that the driving feris constant during transformation and takingipladerivative
of (9) with respect to strain tensor we get théofeing equation:

rn+l n+l 24 p.n+l
O O (a8 et )=S0, T (19)
aEkl aEkl p=1 aEkl

r,n+l
Inserting (18) in (19) results in a system of lineguations foragf
EkI

substituted into (18) hence enabling us to detezntire jacobian exactly which is important for theadratic
convergence of the global FEM equation (17).

During calculations additional caution has to bieetato check if martensite volume fractions arehimit
limits given by (4). Usually there is more than aragiant active in an element and volume fractibthe element

the solution of which can be back
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will reach 1 before a single variant will breakstHimit. Therefore, it is reasonable to control togal volume
fraction of martensite in elements rather thantfoms of each variant separately. After the FEM basverged
(residual of (17) is less than tolerance) each etens checked and if martensite fraction is gmetitan 1 minus
some tolerance the load step is divided into twastps and the FEM calculation is repeated withghialler step.
If a model consists of many elements this sub-stgpplgorithm can take a long time to converge,itsis
recommendable not to choose to tight a toleranees@t it to 13).

The complete numerical algorithm involving FEM dasummarized in the following steps:
Mesh the model with finite elements.
Define the internal orientation of each finite elarhby means of Euler angles.
Transform transformation parameters from localltdgl coordinate system.
Apply next increment of load if total load is netached yet.
Calculate trial (elastic) state, i.e. solve linE&M problem to determine initial displacements.
Determine strain at each Gauss point from displacdsn
Based on calculated strain from step 6 perfornmrmetuapping algorithm (chapter 3.1) at each Gaus# po
of each element.
Calculate the residual of (17) (i.e. determinerimié forces from stresses obtained in step 7edidual is
less than the set tolerance, update stresses ameinsite volume fractions. Check if martensite tiats
are within the limits. If they are return to stepl#any limit for martensite fraction is violatetivide the
current load step by two return all variables ® ¥hlues of last converged (sub)step and retusteim4.

9. Calculate the jacobian from (18) and the displacgniecrement from the Newton-Rhapson method.

Calculate updated displacement and return to step 6

NouohkrwhpE

©

4 Results and discussion

4.1. Experimental techniques and determination of @terial parameters
To perform calculations with the presented modelftilowing material parameters must be input:

- elastic properties of both phaseg{ , Cjy, )
- F®— critical driving force

- To—equilibrium temperature

- texture data (orientations of crystal grains)

- crystallographic parameters of the 24 HPYS,(my ,r = 1, .., 24)

- B - coeffiecient of linear dependency of chemicargy around equilibrium temperature
- interaction matrixH"

Ideally, all of the parameters (except texture)uttidbe determined by experiments on single crystals
However, we were unable to obtain monocrystalliaengles of Ni-Ti as they are very difficult to pradu
Therefore, some deductions based on experimentlltse on polycrystals were made that enabled the
determination of the missing parameters. Polychystasamples in form of superelastic wires wer¢agted from
a commercial source. The composition of the allegi@en by the manufacturer was 50.8 at.% Ni anHalance.
The diameter of the wire was 3 mm and the length 230 mm. We had access to a Zwick Z050 univeesiiing
machine and a Netzsch DSC 204 F1 differential sogncalorimetry (DSC) apparatus. Tensile tests aeswere
conduced with position load control and the spekdbading (¢) was 10" s in order to reduce the thermal
coupling effect during transformation. Temperatoostrol was achieved by confining the sample ared gtips
during the tensile test in a ventilated temperatohamber. To determine tension-compression asyrgmetr
compression tests were made on the tensile samplieh were cut to a length of approx. 57 mm. Tovprg
samples from buckling special guides were constdics shown on Fig. 6. The guides enabled the fise o
compression extensometers which require a minimlearance of 25 mm.
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upper grip (moving)

: N extensometer arm
Z A
. .ﬁ

sample
. guide

N N

; T )
i L.—— supporting plate

lower grip (fixed)

Fig. 6 Experimental setup for compression tests

DSC tests were carried out on samples cut fromswirigh abrasive water jet. The samples for DSCyaisl
were approximately 3 mm in height. The speed otihgaand cooling during the test was 10 KrhifFrom the
results of the DSC analysis the transformation &neores were determined as follows: A306 K, As = 268 K,
Ms =234 K and M = 205 K. From (8) it follow§, = 270 K.

If isotropy is assumed only Young's modulus ands§ai's ratio of both austenitic and martensiticspha
should be measured to determine elastic prope@ias.material was austenitic at room temperatueYsung's
modulus can readily be determined from the ini@adgent during the tensile experiments. Poissatis was not
measured and was assumed to be equal in austaditmartensite and the value vas serat0.3 as suggested in
literature [8]. The measurement of martensite's I modulus should be conducted at a temperatherew
material is completely martensitic. We were noteald reach such a low temperature so we estimdted t
martensitic modulus from the tangent of unloadirigeraloading to a level where stress-induced maitien
transformation was completed (Fig. 7). The unlogdiarve is non-linear since inelastic effects sashmartensite
variants' reorientation and reverse transformaticsome grains take place during unloading. In gartee highest
measured value for modulus (tangent) should bentakehe real modulus of martensite [41].

Assuming thaE° is a material constant it can be shown that tha af a hysteresis loop obtained in a closed
transformation cycle in isothermal load-displacetmexperiment is always equal t&-2[10]. We determined®
from a uniaxial tensile experiment on a wire afafiént temperatures. As seen from Table 1 thene isignificant
difference for values determined at different terap@res. In our calculations we use the vaitie 9.7 MPa. Fig. 7
shows the experimental stress-strain curve obtaih@d3 K and the area used to calcuFitis shown.

F° [MPa] Table 1 Critical driving force for transformation as detensil from the hysteresis

Temperatue [K
P K] area at different temperatures.

303 9.9
313 9.7
323 9.7
700
600
500
= —
E 400 EM
; 300 2 F(
200 E*
100 F/ v
0 Fig. 7 Determination of Young's modulus of both phases and

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 the aDDrOXImate area Used to CalCUFC.
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Texture of the specimens can be measured by Xiffigadion or EBSD (electronic back scatter difftian)
analysis. Unfortunately, we were not able to conduny of the two methods, therefore we determindgehtations
of the crystal grains in our model under the asgionghat during the wire production process ptastip occurs
on the <111>{110} system (typical for materials WiBCC lattice). This is consistent with the texture
experimentally determined in [12] and [30]. Polgufies of the texture for 343 grains used in oucwdations are
shown on Fig. 8. Note that the center of the pigleré coincides with the direction of the loadingigh is also the
direction of the wire drawing.

{100} {110}

Fig. 8 Pole figures showing the asumed texture used tulzlons.

Theoretical predictions of the crystallographic gmaeters are in good accordance with the known
experimental results [20], therefore these pregiiciare used in our model. As mentioned the ctggtaphic
parameters are alloy specific and can be calcultibe lattice parameters of both phases are kndmwiiterature
the closest composition with measured lattice patars is an alloy with 51.9 at. % Ni [42] and tHata is used to
calculate the HPV parameters which are given indab

Table 2HPV parameters for the 24 variants used in ountatiions.

m, = 0.8881 b, =0.0574

m, = 0.4038 b, = 0.0627

m; = 0.2196 b; = 0.0963

Variant m b Variant m b

1 (M, -Mp, Me) (by, -, bs) 13 (Mg, My, -Mp) (-bs, -y, -by)
2 (M, -y, M) (-bg, by, -b3) 14 (Mg, My, My) (-bs, by, by)
3 (Mg, My, M) (-by, by, bs) 15 (s, My, -my) (bs, by, by)
4 (Mp, My, -My) (b, -0y, -b3) 16 (s, -Mp, M) (bs, -y, -by)
S (M, My, -Ms) (by, by, -bs) 17 (o, Mg, My) (-by, b, by)
6 (M, My, M) (b, by, bs) 18 (A, Mg, -My) (by, s, -by)
/ (Mg, -Mp, -Ms) (-by, -y, -b3) 19 (M, Mg, M) (b, bs, -by)
8 (M, My, M) (-bg, -y, bs) 20 (A, Mg, -My) (-by, b, by)
9 (Mg, My, M) (bs, by, by) 21 (o, Mg, -my) (-by, b, -by)
10 (g, -my, -My) (bs, by, -by) 22 (4, Mg, Mp) (by, b, by)
11 (Mg, -Mmy, -my) (s, oy, by) 23 (1M, Mg, My) (b, s, -by)
12 (415, My, My) (-bs, by, -by) 24 (p, Mg, -Mmy) (b, b, by)

The parameteB can be exactly determined only on single crystdtswever a strategy from [12] can be
used to estimatB from results of tensile tests of polycrystal spasms with known texture at different temperature.
Namely, assuming uniaxial stress state it followesf (9) that when the transformation stafts Q) the following
equation holds

1
E (o-cr )2A81111+ g — B(T _To) =F°,
where g is the critical stress needed for the onset of titamsformation at giverT and £"™is the

transformation strain of the HPV variant with theximum value. If the difference in elastic propestis neglected
it can be deducted that
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cr
B = aa— Elr,max' (20)
oT
meaning thatB can be determined if critical stress for the onsktransformation is measured at different
temperatures. Based on the assumed texture tloaving estimation can be made: we assume that tlyenystal
is acting very much like a single crystal orienbedhe [111] direction. For [111] directioa™ ™= 0.053. Table 3
shows the values of critical stress at differembperature as determined from tensile experimé&ntsn this data

average stress ra{eaaij can be determined to be 7.6 MPa/K and from (2@)lbws B = 0.4 MPa/K.
T

Temperature [K]  g° [MPa] Table 3 Temperature dependence of critical stress for fohwansformation.

299 315
303 355
313 420
323 500
333 580

The interaction matrixd™ is practically impossible to measure. It can beéneged by micromechanical
analysis (see e.g. [43]) but for Ni-Ti the valudstlte matrix elements are very low. Therefore, veglact the
interaction energy, i.e¢4” =0,p, r = 1, .., 24. Material properties used in our ciltons are summarized in Table
4,

Table 4 Determination of material properties

Value used in our

Material property Method of determination :
calculations
\E(E\)ung s modulus of austenite from uniaxial tensile test 67 GPa
Young's modulus of austenite from uniaxial tensile test (tangent at
M . . 30 GPa
E unloading after complete transformation )
Poisson's ra_tlo of austenite from literature [8] 03
and martensite
Critical driving forceF® measurement of hysteresis area at full 9.7 MPa

transformation cycle

arithmetic mean of austenite finish and
martensite start temperature, which are 270 K
measured by DSC

Thermodynamic equilibrium
temperaturd

based on characteristics of sample
Crystallographic texture production technology and data in<111>{110} texture
literature [12, 30]
Crystallographic parameters theoretical prediction based on

of HPV b, ,r = 1, ..,24 crystallographm theory of martensite see Table 2
transformation

estimated from temperature dependence of
critical stress for transformation for 0.4 MPa/K
assumed texture

Coefficient of linear
dependenc

theoretical prediction based oH”=0,p,r=1, ..,24

Interaction matrixd™ ; . .
micromechanical analysis (neglected)
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4.2. Performance of the numerical model and compason to experimental results

The algorithm presented in chapter 3 was convaaddeORTRAN code. Standard finite element procedwere

implemented using libraries presented in [44]. Gewitally our model was a cube divided into 8-nauldic

elements, 7 elements on each side, totaling in &8dfents for the whole model. The number of elemerds
chosen relatively low in order to be able to malikeations on a standard personal computer iroredse time.
As suggested in [12, 31] 343 elements are suffidiergive reasonable enough results in terms ofrosgopic
stress-strain behaviour and texture representa@me face of the model had displacements constramthe
direction of loading (in our case y-axis). Additadly two edges of the restrained face had additioaastraints in
all directions in order to prevent rigid body ratat On the face opposite to the restrained faadif@s in form of
displacements were applied. Results for the sstag curve were obtained by graphing the totspldicement of
the loaded face vs. the resultant force load orséime face (obtained by summing resultant forcedl afodes on
the face). The geometry of the FEM model, the aaimss and loading conditions are depicted in Big.

Fig. 9 FEM model used in our calculations consists of B4Bode cubic
elements, bottom face is constrained and top ftmaded with displacements.

Taking into account the implicit nature of the meted algorithm relatively large load steps carchesen.
However, if steps are too big convergence problerag occur due to the fact that the number of aatieetensite
variants between two Newton iterations of the FEIlgbdathm changes significantly. The larger the mésfth
more elements) the more variants are potentialtivated, hence larger meshes require smaller loajplss The
model with 343 elements converged if 50 or morel lsgeps were used for loading up to the total rstoi0.08.
The same number of steps was used for the unloalarghe given setup the calculation time was &Bdihrs on
a PC with E8500 Intel processor (with only one cased) and 4 GB RAM. A typical convergence duringad
step is shown in Table 5. It can be noted thatajlglihe convergence is not quadratic which camthebuted to
the fact that number of active variants changes fome iteration to another. Once the number ofactariants is
stabilized the convergence is fast.

Table 5 Convergence for a typical load step in simulatiba polycrystal with 343 grains.

Total number of active

Iteration Residual of (17) variants in the polycrystal
1 2.9180967 6797
> 1.319669210° 6792
3 3.2286778102 6876
4 4.976358710° 6875
5 1.172360€10° 6883
6 1.648362510° 6883
7 1.252000€10™ 6883




15 Andrej Puksi et al.: Micromechanical modelling of superelasfici

Figs. 10-12 show the comparison of the experimeantdl numerical data for tension at three diffetest
temperatures. The results of the numerical anagrgisn general in good agreement with the experiateesults.
The stress plateau level is predicted well althotighquality of prediction depends on temperatiités can be
attributed to the fact that the value of param&és not determined exactly by measurements on esiagistals.
The prediction of the maximum transformation strénalso good but significant differences ariseerathe
transformation ends. Experimental results implyt #fter the austenite to martensite transformasaromplete the
response is not completely elastic as assumed enntbdel. The reason for inelastic response liegshan
reorientation and detwinning of martensite variamtkich can not be captured with the existing moaleich is
based on habit plane variants (twinned martensat)er than on correspondence variants (single emsite
variants). The same reason causes inelasticitiemanensite unloading which makes the determinatbn
martensitic Young's modulus difficult. Nevertheleske average slopes of the martensite unloadinghén
numerical model and experimental results are indgagreement. It can also be observed that thensinmai
experimental samples does not recover completddis i§ caused by local plastic deformation andrimpmplete
reverse transformation (areas of martensite stpped inside austenite). Neither of these effectovered in the
presented model and complete recovery is predidteese effects should be taken into account ificyohding is
to be studied. Namely, in subsequent cycles thiduakstrain accumulates and the error of predictimreases
with each cycle.

700

700

T=303K
600 —— experimental
- numerical

T=313K
600 —— experimental
- numerical

500 500

400 400

c [MPa]
c [MPa]

300 300

200 200

100 —

'
.
'
’
S 100 /
0 [ 0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

€
Fig. 10Comparison of experimental and numerical results atig. 11 Comparison of experimental and numerical results at
303 K. 313 K.

700

T=323K
600 —— experimental
- numerical

1

‘ : Fig. 12 Comparison of experimental and numerical results at
. . . 0.08 323 K
. ‘

Fig. 13 shows the comparison of numerical reswoltsesults of compression tests. The agreement @ghmu
worse than in case of tension. However, the gertermlency of higher transformation stress plateal smaller
maximum transformation strain is predicted. As barobserved the experimental hysteresis for a camglcle is
greater than in tension. This can be attributetthéceffects of sample constraining in the guide&kould not be
made completely frictionless. Also significant imtition marks were left on the supporting plateg(F6)
indicating that it cannot be considered complesify which affects the slope of the stress-stiainve.
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1400

T=299K

1200 —— experimental

- numerical

1000 .

800 4

& [MPa]

600 ’

400 S

200 o
.

et - Fig. 12 Comparison of experimental and numerical results for
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 008 Compression.

To determine the effect of different elastic prdjgar calculations with the presented model were enad
under assumption of equal elastic properties inemite and martensite. Fig. 14 shows the companitim the
results obtained for different elastic properti@s. can be observed, the transformation stresseaulatevel and
maximum transformation strain are significantly eated by this assumption. The difference in maximum
transformation strain is attributed to the diffezenn elastic strain of martensite due to differéating’s modulus.

700

700

T=313K / T=313K .
600 e equal elastic p.roperties‘ ':' 600 —— random texture '.'
- different elastic properties h ---- <111>{110} texture ’
N ‘
500 N 500 J
s —_ | fremmmemmm e s -
& 400 T 400 .
= S .
© 300 F 300

200

100 100

0 0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

& €
Fig. 14 Comparison of simulation results obtained with equatig, 15 Comparison of simulation results obtained for a
and different elastic properties in austenite aadtemsite. polycrystal with a random texture and a polycrystith
strong <111>{110} texture

Fig. 15 shows the importance of texture for polgtajline materials modelling. A significant differee in
maximum transformation strain can be observed foolgcrystal with randomly assigned texture ancbyqrystal
with <111>{110} texture. As a consequence, strdagepu levels also differ, since the area of thetdrgsis loop is
constant.

5 Conclusions

A numerical algorithm for the solution of the cahgive equations based on micromechanics of SMAhwi
different elastic properties in austenite and nmesite was presented. The algorithm is based omalicit scheme
which reduces convergence problems. Neverthelead, dtep size is limited mainly because of thevactariants
selection process. The use of small load stepsgluhie entire calculation was prevented by appticadf a sub
stepping algorithm.

Results of the numerical simulation were compamdexperimentally obtained stress-strain curves on
polycrystalline Ni-Ti wires. The comparison of s&tse plateau level, maximum transformation strain and
temperature dependence showed good agreement eficairand experimental data in tension. It wasashthat
the effect of non-constant elastic properties sthowlt be neglected. Similarly, material textureypla great role in
the simulation of polycrystalline aggregates. Sliglvorse agreement was observed in compressidrihbwoverall
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tendency of the tension-compression asymmetry wedigied well. To determine the reasons of worseeagent
in compression more attention should be paid toetggerimental setup. However, considering the amaodfin
simplifications made in material parameter deteatiom the results in general can be consideredod fpase for
the following development of the model.
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