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ABSTRACT: This paper analyzes large deflection profiles of slender, inextensible cantilever beams
of prismatic and non-prismatic longitudinal shapes with rectangular cross-sections subjected to a
concentrated moment at the free end. The stress–strain relationship of the material is represented by
the Ludwick constitutive law. Different non-linear stress–strain relations in tensile and compressive
domain are considered. The main purpose of this paper is to investigate the influence of geometrical
and material non-linearities on the shape of the deflection curve. The solution of a strongly
non-linear set of equations is obtained numerically. In the case when non-linear stress–strain
relationship in tensile and compressive domain is identical, an analytical solution is given in terms of
infinite series. Several examples for a variety of different shapes of beams are presented considering
both linearly and non-linearly elastic materials in the elastic domain.

KEY WORDS: large deflections, non-prismatic cantilever beam, end moment, Ludwick formula,
material non-linearity.

INTRODUCTION

T
HE SUBJECT OF large deflection of flexible beams and elastica problems still attracts
considerable attention from many scientists. The mathematical model of elastica is

based on assumptions that the beam is inextensible, shear stresses are negligible in
comparison with the normal stresses when the length-to-height ratio of the beam is large,
and Bernoulli hypothesis which states that plane cross-sections, which are perpendicular to
the neutral axis before deformation, remain plain and perpendicular to the neutral axis
after deformation and do not change their shape and area. It then follows that the
Euler–Bernoulli equation, which states that local bending moment is solely proportional to
the local curvature, is valid.

Most of the studies in elastica theory have focused on problems of linearly elastic
material. There are a lot of papers, and without even attempting to give an exhaustive list,
a few examples can be found in references [1–5].

However, studies of large deflections of slender beams made of non-linearly elastic
material are less frequent. Literature that is most relevant to the problem discussed here
follows.
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Oden and Childs [6] studied the post-buckling problem of finite deflections of
a clamped-free column subjected to an axial force and constructed of a non-linearly
elastic material characterized by a moment-curvature law similar to that exhibited by a
class of elastoplastic materials. Prathap and Varadan [7] investigated the inelastic large
deformation of a uniform cantilever of rectangular cross-section with a vertical tip load
at the free end. The material is assumed to have a stress–strain relationship of the
Ramberg–Osgood type. Lo and Das Gupta [8] examined bending of a non-linear
rectangular beam in large deflections. For the sections of the beam in the elastic domain,
the linear stress–strain relationship is used, and in the domain where maximum stress
exceeds the elastic limit, the stress is represented by a logarithmic function of strain. Lewis
and Monasa [9] solved the problem of large deflections of a prismatic cantilever beam
made of Ludwick type materials subjected to an end moment. The results are given for the
vertical and horizontal deflections at the free end of the beam for rotations less than �/2.
Fertis and Lee [10] developed a thoughtful analysis of flexible non-prismatic bars subjected
to complicated loading conditions using simplified non-linear equivalent systems. The
research on this matter is treated in more detail in reference [11]. Lee [12] considered the
large deflection problem of a prismatic cantilever beam made of Ludwick type material
under a combined loading consisting of a uniformly distributed load and vertical
concentrated load at the free end. Baykara et al. [13] studied the effect of bimodulus
material behavior on the horizontal and vertical deflections of a thin cantilever beam
under an end moment. Jung and Kang [14] analyzed buckling of a prismatic, inextensible
column fiber which is considered to be with no shear effect and whose constitutive
equation corresponds to a Ludwick or modified Ludwick type. They presented solutions
for four different combinations of a horizontal and verical direction of point and
distributed load. Anandjiwala and Gonsalves [15] investigated the effects of fabric bending
parameters on the buckling behavior of woven fabrics by numerical computations.

The main purpose of the present paper is to investigate the influence of
geometrical (large deflections, non-prismatic shape of the beam) and material
non-linearities (non-linear stress–strain relation, different material constants in tension
and compression) on the shape of the deflection curve.

FORMULATION OF THE PROBLEM

The mathematical model of the discussed problem is based on elastica theory.
We consider a slender, initially straight cantilever beam of length L subjected to a moment
Me which is applied at the free end of the beam, as shown in Figure 1. The Cartesian
(x, y)-coordinate system is chosen in such a manner that the abscissa axis coincides with
the axis of the undeformed beam and the coordinate origin is located at its clamped end.

Me
y

s
he
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x

Figure 1. Bending of non-prismatic cantilever beam.
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Parameter s, 0� s�L, denotes the curvilinear coordinate along the axial line measured
from the clamped end and �(s) the angle between the positive x-axis and the tangent to the
neutral axis at point s. The cantilever beam has a rectangular cross-section, and a variable
height, where h(s) denotes height of cross-section at point s, a constant width, and he the
height of the beam at the free end. The material of which the beam is made is of
non-linearly elastic material for which the experimental stress–strain relation is represented
by the Ludwick constitutive law, i.e.:

� ¼ signð"ÞE "j j1=k ð1Þ

where � and " are the stress and strain, respectively, E and k are material constants,
Figure 2.

The function sign in this particular case indicates that Ludwick formula is valid in
tension and compression. Additionally, different non-linear stress–strain relations in the
tensile and compressive domain are considered.

BASIC EQUATIONS

The concepts and assumptions stated in the previous sections will serve as a starting
point for derivation of governing equations. An infinitesimal element of the deflected
beam is shown in Figure 3.

The equilibrium of bending moments yields:

dM ¼ 0 ð2Þ

Non-linear material

Non-linear material

Linear material

σ

σ = Eε1/k

ε

k > 1
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Figure 2. Stress–strain relation for Ludwick type material in tensile domain.
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Figure 3. Infinitesimal element of the deflected beam.
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The boundary conditions for the cantilever beam in Figure 1 are:

�ðs ¼ 0Þ ¼ 0 ð3Þ

Mðs ¼ LÞ ¼ Me: ð4Þ

Additionally:

yðs ¼ 0Þ ¼ 0 ð5Þ

xðs ¼ 0Þ ¼ 0: ð6Þ

By integrating Equation (2) and using the boundary condition (4), we get

MðsÞ ¼ Me: ð7Þ

Next, Figure 4 shows a rectangular cross-section of the beam, where T0 and T are points
on the centroidal and neutral axis, respectively.

Since different material constants are applied in tension and compression, the neutral
and the centroidal axis no longer coincide. As shown in Figure 4, a neutral line is a line at
position ht(s) from the maximum in the tension surface, and hc(s) from the maximum in the
compression surface of the beam. It can be noted that

htðsÞ þ hcðsÞ ¼ hðsÞ: ð8Þ

An undeformed longitudinal shape of the beam is defined by the equation:

hðsÞ ¼ he
1� p

L
sþ p

� �q

ð9Þ

where p and q are the coefficients that determine the shape of the cantilever.
It is known that the inner bending moment, acting at any cross-section of the beam, can

be expressed with normal stress �, as:

M ¼ �

Z
A

�ydA ð10Þ

h(s)

T

T0
M

a
t

zT

y,yT
c

z

ht(s)

hc(s)

Figure 4. Rectangular cross-section of the beam.
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where � is related to corresponding strain in tension and compression, i.e.:

�t ¼ Et "tj j1=kt ð11Þ

�c ¼ �Ec "cj j1=kc ð12Þ

where t and c denote the tensile and compressive domains, respectively, and Et, Ec, kt, and
kc material constants in corresponding domains. Combining Equations (7)–(12), taking
into account that radius of curvature �ðsÞ � 0 for all s, where 0 � s � L, and using the
normal strain-curvature expression:

" ¼ ��1y ð13Þ

Equation (10) takes the form

Me ¼
EtItðsÞ

�ðsÞ1=kt
þ

EcIcðsÞ

�ðsÞ1=kc
ð14Þ

where:

ItðsÞ ¼
kt

2kt þ 1
htðsÞ

ð2ktþ1Þ=kta ð15Þ

IcðsÞ ¼
kc

2kc þ 1
hcðsÞ

ð2kcþ1Þ=kca: ð16Þ

In Equations (8) and (14) three unknowns can be identified, i.e., ht(s), hc(s) and �(s).
To obtain a complete solution an additional equation is needed. Given that there are
no axial loads applied to the beam, the total axial force generated by the normal stresses
must be zero. This can be expressed as:

Z
A

� dA ¼ 0 ð17Þ

Substituting Equations (8) and (11)–(13) into Equation (17), results in:

EtStðsÞ

�ðsÞ1=kt
þ
EcScðsÞ

�ðsÞ1=kc
¼ 0 ð18Þ

where:

StðsÞ ¼
kt

kt þ 1
htðsÞ

ðktþ1Þ=kta ð19Þ

ScðsÞ ¼ �
kc

kc þ 1
hcðsÞ

ðkcþ1Þ=kca ð20Þ
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Variables ht(s), hc(s), and �(s) are calculated at discrete locations on the
deflected beam when solving the system of Equations (8), (14), and (18). The solution
was obtained using Newton–Raphson iterative method. Finally, by using the expression
for curvature:

1

�ðsÞ
¼

d�ðsÞ

ds
ð21Þ

and boundary conditions (3)–(6), geometric relations from Figure 3, i.e.:

dy

ds
¼ sin �ðsÞ ð22Þ

dx

ds
¼ cos �ðsÞ ð23Þ

can be employed to obtain the Cartesian coordinates for a point on the neutral axis of the
deflected non-linear cantilever beam.

In the case when Et¼Ec¼E and kt¼ kc¼ k it is possible to obtain an analytical solution
to the problem of non-linear large deflections of non-prismatic cantilever beam in terms of
infinite series. Equation (14) thus becomes:

Me ¼
EIðsÞ

�ðsÞ1=k
ð24Þ

where:

IðsÞ ¼
1

2

� �ðkþ1Þ=k
k

2kþ 1
hðsÞð2kþ1Þ=ka ð25Þ

Using Equations (9), (21), (24), and (25), we can find:

d�ðsÞ

ds
¼ uðrsþ pÞw ð26Þ

where:

u ¼
Mk

e

Ek 1
2

� �kþ1 k
2kþ1

� �k
h2kþ1
e ak

, r ¼
1� p

L
, w ¼ �qð2kþ 1Þ: ð27Þ

Integrating Equation (26) and applying boundary condition (3), leads to:

�ðsÞ ¼ u

Z s

0

ðrtþ pÞw dt

¼ mðrsþ pÞwþ1
�mpwþ1 ð28Þ
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where:

m ¼
u

rðwþ 1Þ
: ð29Þ

Substituting Equation (28) into Equation (22), taking into account a trigonometric
addition formula for the sine function, and expanding the derived expression into an
infinite series results in:

dy

ds
¼ cos mpwþ1

� �X1
n¼0

ð�1Þn

ð2nþ 1Þ!
mðrsþ pÞwþ1
� �2nþ1

� sin mpwþ1
� �X1

n¼0

ð�1Þn

ð2nÞ!
mðrsþ pÞwþ1
� �2n

: ð30Þ

Further, integrating Equation (30) and considering boundary condition (5) yields:

yðsÞ ¼ cosðmpwþ1Þ
X1
n¼0

ð�1Þn

ð2nþ 1Þ!

m2nþ1 ðrsþ pÞðwþ1Þð2nþ1Þþ1
� pðwþ1Þð2nþ1Þþ1

� �
ðwþ 1Þð2nþ 1Þ þ 1ð Þr

� sinðmpwþ1Þ
X1
n¼0

ð�1Þn

ð2nÞ!

m2n ðrsþ pÞ2nðwþ1Þþ1
� p2nðwþ1Þþ1

� �
ð2nðwþ 1Þ þ 1Þr

: ð31Þ

In a similar way, x(s) is deduced, i.e.:

xðsÞ ¼ cosðmpwþ1Þ
X1
n¼0

ð�1Þn

ð2nÞ!

m2n ðrsþ pÞ2nðwþ1Þþ1
� p2nðwþ1Þþ1

� �
ð2nðwþ 1Þ þ 1Þr

þ

þ sinðmpwþ1Þ
X1
n¼0

ð�1Þn

ð2nþ 1Þ!

m2nþ1 ðrsþ pÞðwþ1Þð2nþ1Þþ1
� pðwþ1Þð2nþ1Þþ1

� �
ðwþ 1Þð2nþ 1Þ þ 1ð Þr

ð32Þ

RESULTS AND DISCUSSION

To illustrate the influence of the parameters kt and kc, several examples with different
configurations of material constants are discussed, cf. Table 1. In nature, if a material has
non-linear response in tension it is likely that the response in compression will also be
non-linear (kt, kc 6¼ 1.0). Therefore, it should be noted that combinations t1–t5 in which at

Table 1. Material constants of Ludwick type non-linear material.

Configuration t1 t2 t3 t4 t5 t6 t7

kt 1.0 1.8 1.0 0.8 1.0 1.8 0.8
kc 1.0 1.0 1.8 1.0 0.8 0.8 1.8

Et¼ 125� 103MPa Ec¼ 75� 103MPa
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least one of tensile or compressive domains (of the beams) consists of linearly elastic
material are selected only to better understand the influence of non-linearity parameters on
behavior of the beam. Numerical and analytical results for the treated cases are presented
in Figures 5–7 and Tables 3–6.

Geometrical properties of the cantilever beam and the coefficients that determine the
longitudinal shape of the cantilever beam are given in Table 2.

In the following numerical examples, cantilever beams are subjected to several different
end moments. Since it is obvious that an increasing modulus of elasticity in tension or
compression decreases deformations, no variation of moduli Et, Ec is made.

Example 1

As the first example, a case of prismatic cantilever beam, cf. Table 2, of linearly elastic
and Ludwick type non-linearly elastic material is shown in Figure 5.
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Figure 5. Deflections of the beams for Example 1.
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Figure 6. Deflections of the beams for Example 2.
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Figure 7. Deflections of the beam for Example 3.

Table 2. Geometrical properties and coefficients that determine the shape
of the beam, cf. Equation (9).

Example a (m) he (m) L (m) p q

1 0.05 0.02 1.0 0.5 0.0
2 0.05 0.01 1.0 1.4 4.0
3 0.05 0.03 1.0 0.1 0.4

Table 3. Comparison of end deflections for prismatic beam made of annealed copper.

Lewis and Monasa [9] Present study (analytical)

Me (Nm) dh (mm) dv (mm) dh (mm) dv (mm)

1.1298 0.010 2.807 0.0104 2.8098
2.2597 0.206 12.545 0.2069 12.5535
3.3895 1.191 30.089 1.1915 30.1071
4.5194 4.117 55.850 4.1213 55.8802
5.6492 10.752 89.842 10.7630 89.8873
6.7791 23.454 131.506 23.4768 131.5678
7.9089 45.044 179.418 45.0861 179.4925
9.0388 78.504 230.932 78.5701 231.0162
10.1686 126.418 281.889 126.5154 281.9756

Table 4. Convergence of series (31) and (32) for a prismatic annealed copper beam,
for Me¼ 6.7791Nm.

No. of terms 1 2 3 4 5

x(s¼L) 33.1116 23.2161 23.4808 23.4767 23.4768
y(s¼L) 135.0994 131.4584 131.5697 131.5678 131.5678
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The effect of material non-linearity is evident from the difference in deflection curves in
Figure 5. It can be seen that for combinations t1–t5 increasing the vlaue of material
constant kt or kc results in decreasing the deformation and vice versa. Also, from
comparing the deflection curves for combinations t2 and t3 (or t4 and t5) we can see that
moduli of elasticity Et and Ec also have an important influence. The deformation of the t3
beam is considerably smaller than of the t2 beam because the value of modulus Et is greater
than Ec, see Table 1 and Equations (11) and (12). The same is valid for t4 and t5, which is
also in agreement with conclusions of Baykara et al. [13]. For comparison the deflection of
the linear beam is also presented in Figure 5. Interesting results are obtained when neither
kt nor kc is equal to 1.0, i.e., neither tensile nor compressive section of the beam is made of
linearly elastic material. As previously observed, the deformation of t7 is smaller than of t6
because the value of modulus Et is greater than Ec. Moreover, it follows from Figure 5 that
the deformation of the beam from linearly elastic material t1 is smaller than t6 and t7 when
subjected to Me¼ 0.1 kNm. When it is subjected to Me¼ 5.0 kNm the deformation of t1 is
between t6 and t7, and when subjected to Me¼ 30.0 kNm the deformation of t1 is greater
than t6 and t7.

The analytical solution, Equations (31) and (32), was verified for the case of prismatic
cantilever beam made of Ludwick type annealed copper material, represented by
parameters E¼ 458.501MPa, k¼ 0.463. The results of horizontal and vertical end
deflections, �h ¼ L� xðs ¼ LÞ and �v ¼ yðs ¼ LÞ, are given in Table 3.

It is clearly seen that the results are in good agreement. A minor disagreement in the
above results is only due to a difference in conversion between British and SI units. Since
series (31) and (32) converge fast, only the first 10 terms were applied. The convergence is
presented in Table 4.

Table 6. Convergence of series (31) and (32) for non-prismatic annealed copper beam in
example 3 for Me¼ 0.5 kNm.

No. of terms 5 9 13 15

x(s¼ L/3) (m) 2.16796 0.157293 0.143609 0.143605
y(s¼ L/3) (m) �3.63448 �0.031988 �0.015802 �0.0157989
x(s¼ 2L/3) (m) 2.250120 0.239454 0.225770 0.225766
y(s¼ 2L/3) (m) �3.32186 0.280638 0.296823 0.296827
x(s¼ L) (m) 2.158390 0.147724 0.13404 0.134036
y(s¼ L) (m) �3.00293 0.599559 0.615744 0.615748

Table 5. Comparison of deflections for non-prismatic annealed copper beam in example 3.

Present study (numerical) Present study (analytical)

Me (kNm) 0.1 0.3 0.5 0.1 0.3 0.5

x(s¼ L/3) 0.3286 �0.0500 0.1436 0.3286 �0.0501 0.1435
y(s¼ L/3) 0.0529 0.2761 �0.0159 0.0529 0.2762 �0.0158
x(s¼ 2L/3) 0.6528 �0.3200 0.2262 0.6528 �0.3202 0.2258
y(s¼ 2L/3) 0.1305 0.4696 0.2966 0.1305 0.4695 0.2968
x(s¼ L) 0.9756 �0.6210 0.1348 0.9756 �0.6212 0.1340
y(s¼ L) 0.2134 0.6125 0.6156 0.2134 0.6123 0.6157
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Example 2

Figure 6 shows a case of a more general longitudinal shape, cf. Table 2, of the cantilever
beam of linearly elastic and Ludwick type non-linearly elastic material.

The behavior of the beam is similar to that obtained for the case of the prismatic beam,
Example 1, since the same combinations of material constants are used, Table 1. However,
it is shown that the radius of curvature is no longer constant, i.e., deflection curves are no
longer part of circular lines. The geometry of the beam in this particular example enables
a rapid decrease of the radius of curvature towards the end of the cantilever beam.
The pattern is apparent.

An interesting behavior can be found, e.g., in cases t1 and t6 when subjected to
Me¼ 5.0 kNm. In the first segment of the beam the radius of curvature of t1 is
smaller than of t6, but towards the end of the beam the situation is reversed. It can
be concluded that in general it is difficult to predict the behavior of the beam
only on the basis of material parameters. Therefore each case should be analyzed
with care.

Example 3

Example 3 is a case of a non-prismatic cantilever beam, cf. Table 2, made
from annealed copper with material parameters E¼ 458.501MPa, k¼ 0.463 shown in
Figure 7.

Deflection modes obtained via numerical and analytical approaches are practically
identical. Some numerical values from Figure 7 are presented in Table 5.

The convergence of series (31) and (32) for this case is presented in Table 6. As expected,
the convergence is not so rapidly achieved as in the case discussed in Example 1 due to
greater complexity of the shape of the beam. A required accuracy was obtained after
employing 20 terms of the series.

CONCLUSION

The above analysis discusses large deflection behavior of non-prismatic cantilever
beams of rectangular cross-section which are constructed of non-linearly elastic
material of Ludwick type and subjected to bending moments on the free end.
In addition, the influence of different moduli of elasticity in the tensile and
compressive domains is examined. The solution of governing equations of bending is
obtained numerically. It is shown that in the case when the non-linear stress–strain
relationships in the tensile and compressive domains are identical, an analytical
solution can be found in terms of infinite series. Good agreement between the
numerical and analytical approaches have been confirmed by the results from the
previously published studies.

In general, the results of the above analysis indicate that the deflection profile of the
beam depends, besides the loading conditions, also on many other factors including the
longitudinal shape of the beam and rheological model of the material. Moreover, the same
analysis may be used for treating the problem of a general non-linear relation between
stress and strain of the form �¼ f("), where f is an experimental stress–strain function
characterizing the structural material.
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